IMAGE EVALUATION
 TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

Canadian Institute for Historical Microreproductions / Institut canadien da microreproductions historiques

The Institute has attempted to obtain the best original copy avallable for fillming. Featuree of this copy which may be bibliogrophically unlque. which may alter any of the images in the raproduction, or which may significantly change the usual mothod of filming, are checked below.

Coloured covera/
 Couverture de coulour

Covers damaged/

Couverture endommagdeCovers restored and/or laminated/
Couverture rastaurbe et/ou pelliculteCover title missing/
Le titre de couverture manque

Coloured maps/
 Cartes gbographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or iliustrations/
Pianches ot/ou illustrations en couleur
Bound with other material/
Relió avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion ie long de la marge interieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutes lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possibie, ces pages n'ont pas été filimees.

L'Institut a microfilmd io maillour axamplaire qu'il lui a úté possible de se procurer. Les ditails de cet oxemplaire qui sont peut-otte uniques du point de vue blbliographique, qui peuvent modifier une image reproduite, ou qui pauvent exiger une modification dans la muthode normale de filimage sont indiqufs ci-dessous.

Coloured pages/
Pages de couleur
Pages domaged/
Pages endommagdes
Pages restored and/or iaminated/
Pages restaurées et/ou pelliculées
Pages disculoured, stained or foxed/
Pages décolorées, tachetées ou piqueses
Pages detached/
Pages dótachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégaie de l'impression
Includes suppiementary inaterial/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partialiy obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou particiement obscurcies par un feuillet d'errata, une pelure, étc., ont été filmées â nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked beiow/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Additional comments:/
Commentaires supplémentaires:

The copy filmod here has been reproduced thanke to the generosity of:

The last recorded frame on each microfiche shall contain the aymbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplaire filmo fut reprodutt grlice it it gindroolte de:

Emellotivames.
Comunimien ebolosique de Cenme

Les images suivantes ont cte reprodultes avec io plus grand soin, compte tenu de ia condition ot de le nettot'l de l'exemplaire filmd, ot en conformits avec lee conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimie sont filmes on commencant par le premior plat ot en terminant soit par la dernilere page qui comporte une empreinte d'impreselon ou d'llustration, soit par lo second plat, selon le ces. Tous les autres exemplaires originaux sont filmés en commançant par la promiltre page qui comporte une empreinte d'impression ou d'llustration ot en terminant par le dernidere page qui comporte une telle emprainte.

Un des symboles suivents apparaitre sur la dernidre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", lo symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent âtre filmés ê des taux de réduction différents. Lorsque le document est trop grand pour étre reproduit en un seul cliche, il est film'd à partir de l'angle supérieur gauche, de gauche droite. ot de hout en bas, on prenant le nombre d'Images nécessaire. Les diagrammes suivants illustrant la múthode.

This Report, and all othr Publications of the Geoloyical Sureey, may be ordered either through the Director, On From

DA WSON, BliOS., Montreal. S.LMISON,LOW \& CO., 188 Flect Street, London. F. A. BRCCKHALSS, Leipsic, and B. WESTERMAN : CO., 471 Broadway, New York.

CEOLOGICAL SURVEY OF CANADA.

 alfred r. C. SELWYN, F.R.S., F.G.S, Director.
IESOZOIC FOSSILS.

> VOLUMEI.
\qquad

PART I.-ON SOME INVERTEBRATES FROM THE COAL-BEARING ROCKS OF THE QUEEN CHARLOTTE ISLANDS, COLLECTED BY MR. JAMES RICHARDSON IN 1872.

BY J. F. WHITEAVES, F.G.S., honorahy meyber of the ashyolgan society, oxpori.

MONTREAL:
PRINTED FOR THE GOVERNMENT OF CANADA 1876.

This publication is intended to contain descriptions and figures of some of the organic remins of the Mesozoic rocks of the Dominion.

The present Part is devoted to a monograph on the Invertebrata collected by Mr. James Richurdson from the Coul-bearing rocks of the Queen Charlotte Islands, in the summer of 1872.

The figures, Plates I. to X., have been druwn from nuture and lithographed by Mr. A. H. Foorl, F.G.S., the artist to the Survey.

ALFRED R. C. SHLWYN.
Grological Survey Uffice, Montreal, November 30th, 1876 .
I.

GEOLOGICAL SURVEY OF CANADA.

MESOZOIC FOSSILS.

BY J. F. WHITEAVRS.
VOLUMEI.
I. On some Invertebrates from the Coal-Bearing Rocks of the Queen Charlotte
1slands.

INTRODUCTION.
The Queen Clurlotte Islands, to which exclusive reference will be made in these pages,* wre situatel about half way between the Vaneouver group and Sitka, at a distance of eighty or one hundred miles from the mainland of British Culumbia. Their geographienl position, as laid down on the British Hydrographic Charts, is between Intitudes $51^{\circ} 54^{\prime}$ and $54^{\circ} 222^{\prime}$ north; and longitudes 131° and $133^{\circ} \dagger 07^{\prime}$ west. The eredit of the first discovery of these islands has been incorrectly assigned to La Perouse, or Captain Dixon, in some of the older encyclopoedias und gazetteors; nor are volumes of a much more recent date entirely free from similar errors. By far the most tristworthy account of the progress of discovery on the north-west const of America yet published, is to bo found at Part II., Chapter II., of Mr. W. H. Dall's able work, entitled "Alaska and its Resources." \ddagger In answer to enquiries with reference to the anthenticity or otherwise of supposed discoveries in this vicinity by Admiral Fuentes and others, and as to what was the vocation or rank of' Juan Perez, Mr. Dall kindly forwarded the following historical sketch of the group, whieh, as it contains some unpublished facts and information which probably no other person could give, is glally printed here, with his permission, and in his own words.

1. "The manuscript from which the so-called Veyage of Admiral Fuentes was made public, is now believed to be a forgery. It is certainly unsupported by any intrinsic evidences of truth, and is universally rejected by modern authors. The same remark will apply also to
*There is another group of the same name in" the South Pacific.

Maldonado, and many of the early geographical fictions. Fuentes said that, half way through the north-east passage, into which he sailed he met a ship from Boston!"
2. "Qn the 25th of January, 1774, Ensign Juan Perez, formerly employed in the Manilla trade, sailed on the corvette Santiago, from San Blas, touching at Monterey, California, from which he sailed June 6th, on an exploring expedition to the north, accompanied by Pilot Estevan Martinez, and Rev. Fathers Pena and Crespi, chaplains. The first land seen, July 18, 1774, was that of the Queen Charlotte Islands, in latitude 54°, to the north point of which Perez gave the name of Co. de S. Margarita, and to the high mountains, Sierra de San Cristoval. Finding no anchorage, they turned southward without landing, and on the 9th of August anchored in Nootka Sound. The authorities for this voyage are the narratives of Perez, observations of Martinez, and the jourral of Friar Pena, MSS. copies of which were obtained from the Imperial Archives of Madrid, by the United States Government, in 1840. An account was ulso published in 1802, in the introduction to the voyages of the 'Sutil und Mexicana.' This was the first voyage made northwards by the Spaniards after 1603."
3. "Immediately after the return of Perez, Viceroy Bucarelli ordered another expedition to examine the coast as far as latitude 65°. Captain Brano Heceta, in charge of the Santiago, with Perez as Ensign, and the schooner Sonora, in charge of Juan de Ayala, with Maurelle as pilot, in company with the schooner San Carlos, sailed from San Blas, March 15, 1775. The Captain of the San Carlos became insane before they were out of sight of land, and Ayala was detached to take his place, and stopped at Monterey, while Lieutenant Francesco de la Bodega y Quadra took his place in charge of the Sonora.' Most accounts are erroneous in stating that Ayala accompanied the expedition northwards. (The authorities for this voyage are the MSS. accounts prepared by order of the Spanish Government immediately after the conclusion of the expedition, of the official narrative of the whole, including the journal of Bodega, and of Maurelle, part of the journal of Hecota, and a concise narrative by Bodegn. These are represented by duplicates obtained from Madrid, and now in our State Department Library. A synopsis was published in Galiano's preface to the voyage of the Sutil and Mexicana in 1802. Barrington's translation of part of the MSS. was made before theofficial revision, and includes many errors.) The schooner was attacked by the natives near Destruction Island, north of Cape Mendocino : and being very unwilling to proceed, Heceta, in the Santiago, (with Perez) seized

Fuentes said ho sailed he
ez, formerly go, from San ed June 6th, ?ilot Esteyan The first land s , in latitude de S. MargaFinding no on the 9th of is voyage are urnal of Friar rial Archives account was of the 'Sutil wards by the
arelli ordered 65°. Captain sign, and the o as pilot, in as, March 15, e they were s place, and ega y Quadra erroneous in ards. (The by order of of the expee journal of nd a concise btained from synopsis was Mexicana in de before the attacked by $0:$ and being Perez) seized
the opportunity to return to Monterey. Bolega and Maurelle in the mehooner Sonora, however, kept on their way. They eaw Mount Fhigecumbe abont the middle of August, and afterwards landed in Port Remedios (the Bay of Islands of Cook) and, sailing down the coant, named the strait north of Queen Charlotte Islands, Perez Inlet, and consted along (without entering bays, or fanding) the shores of the said islands. They then returned to Monterey, doing a little surveying on. the Oregon and Californian coast on the way.
Subsequently, Cook did not see the Queen Charlotte Islands."
4. "In 1786, La Perouse coasted along the shore of the Queen Charlotte Islands, and was the flrst to suggest their separation from the mainland. (Arteaga and Bodega, in 1779, did not visit them.) La Perouse, about August 18, 1786, (Vol. I., page 422,) coasted along their shores, and named (on his chart) in the N. part, Baie de Clonard, a bay in the south part, Baie de la 'Touche, the south cape-Cape Hector, and some small islands off it, 'Isles Kerouart.' He sailed to the eastward sufficiently to satisfy himself that a deep inlet extended between the islands and the mainland. His Isles Fleurien are on the main coast, S. and E. of the Queen Charlotte Islands, and are the Princess Royal Islands of Vancouver. He gave no name to the Queen Charlotte Islands."
5. "In 1786, Captains Lowrie and Guise visited the Queen Charlotte Islands coast, but left no information on record in regard to it."
6. "In August, 1787, Dixon coasted along these Islands, landing nowhere, and named them for the first time, also calling the strait north of them after himself. Captains Colnett and Duncan sailed from Nootka to trade at these islands about the same time. and the following year, Duncan sailed through the struit between the lsir ads and the mainland, which had been assumed by the previous voyagers. He also named the Fleurieu Islands (of La Perouse) the 'Princess Royal Islands,' after his vessel."
7. "In 1789, Captain Robert Gray, of the sloop Washington, of Boston, explored the east coast of the Queen Charlotte Islands, which had not previously been visited by any white man, though Duncan had sailed through the strait, keeping more on the mainland shore. Gray called it Washington Island, being ignorant of Dixon's name. Afterwards, Douglas, the colleague of Meares, also visited this east shore."
8. "On the 29th of June, 1790, Captain Joseph Ingraham, of the brig Hope, anchored in a harbour on the south-east side of the Queen Charlotte Islands, which he called Magee's Sound, after one of the owners of his
vessel. His MSS. journal is referred to by Greenhow." * He spent the summer on this coast, and is the first white man, whom we have any account of as actually landing on these islands. All previous voyagers and coasters, for foar of the natives, had contentel themselves with standing off and on near the shores, or anchoring at a distance, and trading from their vessels.
9. "The Columbia, Captain Gray, made a second voyage from Boston in 1790-91, and was occupied traling and exploring on the east const of the Queen Charlotte Islands in August and September, 1791. He wintered at Clayoquot, and built a small vessel, the Adventure, which, under Gray's mate Haswell, sailed from Clayoquot, in the spring of 1792, for the Queen Charlotte Islands, and Gray himself, later in the season, returned there for trade."
On August 22, 1791, Captain Etienne Marchand, in the French ship Solide, which had visited Sitka Sound, made the entrance of Cloak Bay, between North and Graham Islands. While the vessel stood off and on, a boat party entered and explored the bay and adjacent Cox Strait. The bay had been seen and named by Dixon, and had been traversed by Gray, who first identified North Island as an island. Douglas afterwards apchored there, and has given a brief description of his observations; but the first chart, in detail, published of any of the Queen Charlotte Island harbours, was that prepared by Marchand's party.

The Solide subsequently visited the west coast of Graham Island for some distance to the southward, and then departed for Berkeley Sound.
10. "In 1792, the Spanish corvette Aransasu, Lieutenant Jacinto Caamano, sailed from San Blas, and explored the main coast between 50° and 53° North Latitude, but it does not appear that he touched at the Islands, as he was seeking a North Enst passage."
11. "In 1794, Vancouver, returning to Nootka, coasted along the West shore of Queen Charlotte Islands, which he had previously surveyed superficially in September, 1793, but the voyage of 1794 added nothing to information previously obtained."
"I can assure you of the correctness of the preceding notes, as I have verified them carefully. So you can set it down as certain that Perez was the discoverer, and Ingraham probably the first to land. Later voyages are few and mostly very modern; these you are doubtless familiar with."
*"History of Oregon and Callfornis and other Territories on the North-West Cosat of North Americe." By Robert Greenhow, 2nd edition. Boston: 1845.

s

Allhough the existence of coal on these islands hus been long known, it is by no moans certain by whom, or at what date, the diseovery was mule. Openings have been mule upon the anthracite senms of Graham Insand at neveral different localition, under the anspices of the Queen Churlotte Conl Mining Company, but these operations do not appenr to huse been very remunerative, and they have subsequently been discontinued.

In the summer of 1872, Mr. Richardson, of the Canalian Geological cor p^{w}, visited the group, and devoted nemrly two weeks to as careful an examination of the geology of the comentry noar Cowgita, ins the time would' permit. He brought buck with him in interesting collection of the fossils, rocks, minerals and economic products of that region, and published a somewhat detailed account of his investigations in the Report of Progress for 1872-73. The fossil plants collected on this occusion have been submitted to Principul Dawson, whe has eontribuled some notes upon them as an uppendix to the report just referred to, which contaius ulso some remarks on the Cephaloporla by Mr. Billings.
The accompanying map has been prepared to show the distribution of the Coal-Bearing rocks of the region explored, the boundaries of the divisions, and the localities from which the fossils wore collected. An arm of the sea, called Skidegato Channel, soparates Moresby und Graham, the two largest of the Queen Chnrlotte Islands. The western half of Skidegate Channel is very narrow, but on its eastern side it widens out and includes several smaller islands. The map shows the central and widest part of this channel (with Maud, Lina and soverul other small islands), which is bounded on neurly three sides by Graham Island; and its eastern opening called Skidegate Inlet. A portion of Moresby Island is also seen in the lower right hand corner.
The following brief account of the geology of this district is either condensed from Mr. Richardson's report cited above, or is derived from information dirscly suppliod by him.
The Coal-Bearing rocks of the aren ropresented on the map form a trough or syncline, of which only the oiges are visible at the surface. At its wostern extremity, and probably also to the enstwards, the syncline is bonnded by trappean rocks. The following divisions have been proposed for these sedimentary deposits, but the thickness of each sories has not yet been ascertáined:

1. Lower Shales, with Coal and Iron Oro.
2. Coarse Conglomerates.
3. Upper Shales and Sandstones.
 laceons shaten, containing in stumll percentuge of calcareous mater, intentratified with greeninh or greyinh samintonen, which are also very fossiliferons. The base of the meries is chnmeterized by the occurrence in it of semms of mithrncite and heds of clay ironstone. So far as exmmined, the enstwarl onterop of these shales makes a rudely S-shaperl curve, which extends from the N.W. of Moresby Island across Skidegate Channel (or Inlet) to Gruham Islume, and includes Sonth, Mand and Lina Impunds. This edge of the syncline haw a general westerly dip of' from 9° to 30°.
The wentern outerop of we Lower Shilen has been traced acrous the N.W. arm (called Long Arm on the map) of Skidegate Channel, from the S. to the N. side, to the Qucen Charlotte Anthracite Cual Mining Company's works at Cowgitz. The strata here are much contorted, but have a general easterly dip at a high ungle. With the exception of one species, ull the fossil shells were obtained from rocks of this division, the two outerops of which are indicated on the map by the figures 1,1 . Unio Hubbardi was fomed abundantly in bituminous shale at Wilkes tumel, near Cowgitz (F.): und specimens of a bivalve, probably Inoceramus concentricus of Parkinson, were collected at asmall bay to the nouth of Christic Bny (F.): all the rest are from either Mand or Lima Islands. As the shules on thene two islands belong to the same geological horizon, Mr. Richardson did not think it necessary to keep the fossils from ench locrality apart, aud it is now impossible to soparate them.
4. Coarne Conalomerates.-The line of strike of these bede runs purallel to that of the rocks of the previous division. The shaded portions on the map indicate the distribution of the conglomerates as actually observed, and the dotted lines which encloso figure 2, show their supposel extension under water. No lines of betding were traced in thene deponitn, which uppear to be untossiliferous.
5. Upper Shales anio Sandstones.-The position of these rocks is in the centre of the syncline. Their outcrop has been followed along part of the north shore of Skidegnte Channel, on Graham Island, which forms the northern boundary of the space purtly surrounded by dotted lines on the map. These last inclose a solitary 3 , as well as Reef Island and Weed Rock. A few firigments of fossil phuts were collected in the Upper Shales at one locality (F .), also two or three specimens of a shel!
ilifermon argilwroous matter, are alno very he occurrence 1e. So far an adely S-whapeal ross Skidegate th, Maul and vesterly dip of ced across the Channel, from * Coal Mining contorted, but ception of one ' this division, 10 figures 1,1 . ale at Wilkes lve, probably nall bay to the Maud or Linn to same geoloy to keep, the lo to separate
so beds runs e shaded porplomerates an gure 2, show s were traced
hese rocks is llowed along sland, which led by dotted y Reef Island Hected in the ons of \mathfrak{a} shell
which may be Inoceramus concentricue, but which are no fiagmentary, or olse so much distorted, that their generic powition even is uncertain.

Beniles plant remains, which are of frequent ocenrence, the collection contains finurteen specien of Cephalopoxin, six of Gasteroposia, twenty-two Lamellibranchiate bivalves, two Brachioporla and a Zoantharian coral. It will be most convenient to deseribe thene fossils first, and to disense their probable geological horizon afterwards, but it may be briefly stated here that there is mu apmient mixture of collitic and cretaceons types, This circumstance has necessitated double comparimons thronghout, and has alded not a little to the ditllenity of the undertaking.

The sculpture of the shells is generally well preserved, but in comsequence of the laminated strncture of the matrix, nonst of the npecimens have been subjected to such a variety of distortion and compression, thent it is impossible to tell what their original shape was. In mdition to thin. they are frequently imperfect or broken, und as in many cases there in but a solitury example of each kind, it may ensily happen that what now neem to be speecific chancters, may prove to be only individual peculiarities when a more complete series has been obtained.

The most striking and charactoristic fossils of the Lower Shules belong to the class Cophalopoda. Ammonites, in particular, abound almost to the exclusion of other genera, but none of them belong to divisions in which the shells are either simply or crenately keeled. Ont of eleven species, eight have rounded bucks, one belongs to Pictet's subsection Mammillati, while the two remaining, although ranked umong the Clypeiformes, have the periphery obtuse. Another noticenble fenture in the Cephalopoda from these shates is, that the commencement of the decline of the group, as a whole, through the half coiled types of the Ammonite family, is rarely perceptible. Such genem ins Scaphites, Humites, Baculites, Helicoceras, Turrilites, and Toxoceras are nlmost murepresented. The only excoption is-a small fragment which is very donbtfully referred to Hamites, but which may just us likely have been purt of an Ancyloceras.
In describing the Ammonites from these rocks, the most recent modifications of the divisions proposed by Von Buch and D'Orbigny have been adopted as far as practicuble. At the same time it must be admitted that this system of classification is very unsatisfactory in practice. Many Ammonitos present a mixture of characters, and such species might be referred to two, or even three, of these sections, with equal probability. Others, again, which have been placed in two separate groups,
and appurently with good roasons for so doing, have proved to be only different stuges of growth of the same shell.

The old genus Ammonites of Bruguiere, with its eight or nine hundred of so culled species, is a heterogencous assemblage, which requires division into several genera and subgenera. Stoliczka says, very truly, that the animals of Turritella and Cerithium are not in any way more different than must have been those of Ammonites discus and A. Rotomagensis. The whole of the group has been revised anew, on the principle just indicated, by Dr. Waggen and others in Germany, and by Prof. A. Hyatt, in America. The new generic or sulgeneric names proposed by these authors will be alopted in this memoir, at least in those cases in which there is a reasonable probability of their being correctly applied.

Considerable differences of opinion have existed, and probably always will exist, with regarl to what cunstitute speeitie differences in these shells. Those whose experience has been gained by a study of many specimens in the field, naturally attuch less importance to minute differences in form, surface markings and the like, than is accorded to them by others whose opportunities for extended comparisons have been few. In this connection the late Prof. Phillips justly remarks*:-"The zeal of collectors, by procuring them (Ammonites) of all ages and under different circumstances, has given oceasion to coin too great a number of specific names. Yet for the most part, the diversity of names for a given set of forms indicates something really different in the history of the species, and most of the designations may be retained as marking varieties worth diserimination. In making, some years since, a strict comparison of the ammonites of the Yorkshire lias with others from the south of England esteemed to be of the same species, I found often some small differences, especially in the sutures, which might be best understood as locul peculiarities of ruce. Ammonites to be really known as species, must be stuclied with many examples of every age, including the very young and the very old; the change of form in the tourse of life being often very great and remarkable."

In the present instance it has heen impossible to comply with the conditions stated in the last sentence of the above quotation. Several of tho species in this genus, for which new names will be proposed in these pages, are founded on a single imperfect specimen, and in no ease has a large series been obtained. The same, indeed, may be said of all the shells in the colleetion. The septation, too, which, when properly studied, is

[^0]od to be only nine hundred quires division truly, that the more different mayensis. The just indicated, A. Hyatt, in osed by thene ases in which pplied. obably always in these shells. any specimens cences in form, others whose n this connec-- collectors, by ferent circumpecific names. 1 set of forms peies, and most orth diserimiarison of the h of England lll differences, as locul pecucies, must be ry young and hg often very
with the conSeveral of the osed in these no case has a fall the shells ly studied, is
of great assintance in determining the specitic relations of Ammonites, is rarely shown in these Queen Charlotte Ishand fossils.
The Gasteropoda obtained by Mr. Richardson are very few in number, and the specimens are almost always fragmentary or badly preserved.

Lamellibranchiate bivalves are abundant, both in species and inalividuals. The surface markings of these shells are often well shown, hut the characters of the hinge teeth, and the impressions on the interior of the valves can rarely be ascertained. The family Hippuritide has no representativer; Vola and Spondylus are also absent, und there is only a single sjecies of Inoceramus.

Brachiopoda are extremely scarce, only four broken and exfoliated specimens were collected. which belong apparently to two sprecies.

The solitay coral is a compound Zoantharian, belonging to the family Astreide.

Out of forty-two species of Mollusea proper, three (Ammonites Brewerii, A. Stoliczkianus and Aucella Piochii) are well-known Californian fossils. Aucella Piw? ${ }^{\text {aid, however, is probubly identical with the Aucella }}$ Mosquensis of Europe. Unio Hubbardi, Gabb., is abundant at one locality in the Queen Charlotte Islands: it was originally described as from Vancouver Island, probably by mistake. It is the only fresh-water mollusk in the collection, and is, perhaps, the same as the Unio aduncus of Sowerby, from the Wealden deposits of England. Besides these, seven others are either very nearly related to European or Indian sposies, or are actually identical with them. The rewt seem to be new to science, but the specimens are sometimes so imperfect, that it is not thought desirable to propose any specitic mames for them.

Without wishing to introduce any innovations in the use of terms, or to eriticize the descriptions of others, it becomes necessary to define the sonse in which certnin expressions will be used here, as the same words have been employed to convey very different and even opposite meanings.

It has loug been customary with paleontologists to call the outer elge of the shell of a Nautilus or Ammonite, the dorsum, and some still continue to do so. According to Prof. Hyatt, "the position of the female Argonant in her shelly case, and of the Nautilus in its shell, show conchusively that the periphery of the whorls of an Ammonite is the ablominal side, as stated by Richurl Owen and Pictet." For this reason, Mr. Hyatt and some other writers call the outer margin of such shells, the ventral, and the inner, the dorsal region. To prevent any misapprehension which might otherwise arise, the term dorsum will be purposely avoided. Such phrases, as the outer edge of the shell of a

Nuutilus, or the siphonal edge of that of an Ammonite, can scarcely be misunderstond, while the word periphery will suit either indifferently.

The expression aperture, as applied to these fossils, is purposely chosen to describe the shape of the whorl at or near its outer termination, as viewed transversely; but not necesiarily that of the true outer lip of the shell. The height of the aperture will be measured from the centre of the periphery of the outer whorl to that of the one which precedes it; the width, at a right angle to the height.

In describing the shells of Gasteropoda, the adjective transverse, when applied to ribs or strise, is intended to meun transverse as to the whorls, and not as to the axis of the shell.

To preserve a certain consistency throughout, the height of lamellibranchiate bivalves will be measured, as nearly as possible, in the direction of a line drawn perpendicularly from the hinge line or dorsal margin, to the opposite or ventral border. The length will be estimated at a right angle to the height, and the width or breadth as equal to the maximum thickness through the closed valves.

As the valves of the Brachiopoda are respectively dorsal and ventral, the length of these shells will be measured from the beak of the pedicelled valve to its opposite extremity, while the width will correspond to the space between the two margins of either valve, at a right angle to the height.

Throughout these descriptions, the word dianeter must be understood to imply the distance between two points, as measured on a flat surface.
Geographical names and others which, according to Dr. Johnston,* have a "reminiscential evocation," have been freely proposed for fossils which are believed to be new, expecially in the case of genera, such as Ammonites, in which the number of species is already so large that it is almost hopeless to expect to find descriptive names which are not preoccupied.
In conclusion, the writer desires to express his cordial thanks to Mr. W. H. Dall, of Washington, who has kindly made and forwarded tracings of figures as well as copies of descriptions of certain fossils from books not at present accessible in Montreal, and for various critical suggestions; to Mr. F. B. Meek, also of Washington, who obligingly sent photugraphs of drawings made from the original types of species from Vancouver and Sucia Islands, described by him ; to Mr. Richardson for information as to the exact stratigraphical position and localities of the fossils which he collected; and to Mr. A. H. Foord, for the pains he has taken in the delineation of the features characteristic of the different species.

[^1] posely chosen rmination, as uter lip of the the centre of ecedes it ; the
insverse, when to the whorls,
f lamellibrante direction of nargin, to the a right angle um thickness
and ventral, the pedicelled spond to the angle to the
e understood flat surface. inston,* have fossils which as Ammonites, almost hopecupied.
panks to Mr . ded tracings from books suggestions; photugraphs ncouver and ormation 1 s ils which he n in the de-

DESCRIPTIONS OF SPECIES.

CEPHALOPODA.

Belemnitrs. (Sp, undt.)
Plate $1 .$, figs. $1 a, 1 h$, and 1 c .

Fig. 1.
Fic. 1.-Belemnites, species. Outlines of a longitudinal section of the best specimen collected. The position of the apical groove is seen at a, and indications of what is supposed to have been the siphuncle, may be traced at b. The restoration of the point is purely hypothetical.

Three more or less fragmentary specimens of a Belemnite of medium size, which collectively show many of the characters of the guard and phragmoconc. As each of these exhibits some peculiarities which are not seen in either of the others, it will be best to describe them separately.

No. 1 is a portion near the anterior (or thickest) end of the guard, about an inch and a half in length, and partly imbedded in shale. The specimen is broken transversely below and obliquely above, so as to give two natural sections at different angles. The outline of the transverse section is ovately orbicular, the sides being distinctly compressed. The lateral diameter is noarly one-sixth less than the dorso-ventral; the measurements being about five and a half by six and a half lines. The
tangential regtion shows only that the septa of the phagnocone are rather more than a line apart at the wident end.

No. 2 is also a fragment near the anterior end of the gamed, but it is entirely free from any investing rock. As viewed transversely, its ontline is more nearly circular than that of No. 1 , and its sides are less distinctly compressed. The monsurements in this instunce are seven by scarcely six and a half' lines across. The phragmocone (Plate I., fig. 1a) which is loose in this specimen, is elongntely but inversely conical and inequilateral, with the apex distinctly eccentric. Its length is about thirteen lines; its greatest width nembly six lines, mod its least, less than one. At its widest end it is ovate-orbicular in section, as is also the alveolur cavity; the presumed bulbous termination is broken off. Judging by faint lines on the cast, the septa appear to be slightly oblique and very numerous; they are about a line apart at the widest end, and at least four times as close together at or nenr the point.
No. 3 (Plate I., fig. 1) is the most perfect example yet procured, and like the first, is entirely free from the matrix. Its length is an inch and three-quarters, its greatest width seven lines, and its least, searcely six. The anterior extremity of the guard contains more than two-thirds of the alveolar cavity, (as compared with No. 2) and at theopposite end wants only the extreme apex. In this specimen the sides of the guard ate more decidedly compressed than they are in either Nos. 1 or 2. The guard itself is sulreylindrieal, and does not decrease in sizo perceptibly, until abont an inch from the tip, when it begins to narrow unequally and rather suddenly. The apex being broken oft; it is impossible to tell whether the tip was obtusely pointed or shortly acuminate, but the contour of the remaining part shows that it was slightly eecentric. At or near the tip there is a faint and inconspicuous groove, which probably measured about seven lines, if we allow two or three for the piece broken off. The compression of the guard is a little oblique, so that the outline of a transverse section at the anterior end is elliptic ovate, one ond being a little wider than the other. The apical groove is placed, not on either of the flattened sides, but in a direetion corresponding to that of the widest end of the ovoid.

A longitudinal seetion of this specimen, kindly made by Mr. Weston, of which Fig. 1 is a representation, revealed some additional partieulars. The entire length of the guard is twenty-one lines, and of this the phragmocone occupies ten lines. The apex of the phragmocone is slightly eccentrie, and seems to point in the same direetion as does that of the guard. Traces of what is supposed to be the siphuncle were detected

phagmocone are

e guard, but it is transversely, its its sides are less nee are seven by (Plate I., fig. 1a) sely conical and length is about ts least, less than 1 , as is also the is broken off. r to be slightly rt at the widest the point. et procured, and th is an ineh and ast, scarcely six. two-thirds of the posite end wants f the guard are s. 1 or 2. The size perceptibly, rrow unequally apossible to tell minate, but the y eccentric. At which probably e for the pieee que, so that the iptic ovate, one oove is placed, orresponding to

Mr. Weston, of

 nal partieulars. this the phragcone is slightly loes that of the were detectodcrossing some of the upper septa of the phragmocone, and it would appear that the siphuncle is placed on the same side as that towarls which the apices of the guard and phragmocone point.

Mr. S. P. Woodward says* that the upex of the phragmocone of a Belemnite points to the ventral side of the guard, and if this be miformly the cuse, then, in this species both the siphuncle and the apical groove are probably ventral. M. Duval Jouve, \dagger however, maintains that in some of the Neocomian Belemuites the siphuncle is dorsal, and in others ventral. Hence it is by no means certain that the apical groove, of the siphuncle of this species, are ventral, but both seem to be situated on the same side, and that the one towards which the apices of the guard and plragmocone point.
In his remarks upon the Queen Charlote Islund Cephalopoda already referred to, Mr. Billings says that these smali Belemnites belong to the sub-section Acuarii of Bronn's section Aceli, also that they are "closely allied" to the Belemnites Russiensis and B. Kirghisensis of D'Orbigny, two species which are described and figured in Volume II. of Murchison Vernenil and De Keyserling's " Geologie de la Russie et' des Montagnes de l'Oural." In both of these opinions the writer entirely concurs, but the Beleminites collected by Mr. Richardson are apparently distinct from both of their Russian analognes. The guard of B. Kirghisensis is represented as much longer and slenderer than is that of the prosent species, and in B. Kirghisensis the apices of the guard and phragmocone point in opposite directions. The general shape of the guard of B. Russiensis is certainly very like that of the fossil now under consideration; but in the Russian Belemnite the apical groove is placed on one of the flattened sides, which, moreover, appear to be respectively dorsal and ventral.
No traces of a slit down the anterior end of the guard could be detected, nor any indications of a corresponding raised rib on the phrag. mocone, so that these specimens ean scarcely be referred to D'Srbigny's genus Belemnitella, but to Belemnites proper.
The specific eharacters of these Belemnites are so imperfectly shown in the few fragments yet obtained, that it is not thought desirable to propose a new name for them, although they cannot be satisfactorily referred to any known species, and are \mathfrak{p}, bably new to science. The peculiar compression of the guard may be due to the distortion to which so many of these fossils have been subjected.

[^2]
Braminites. (Sp. undt.)

Besider the three specimens described above, a tolerably complete phragmocone and a portion of another were collectal, which must have belonged to Belemnites of considerable size. Mr. Billings describes the most perfect of the two as follows:-"It consists of a portion of a large phragmocone, two und a hulf inches in length, one and a half inches arross the larger extremity, and thirteen lines acrons the smaller. The septa are moderately convex, and there are twelve chambers in the specimen." Little can be added to this description; the measurements have been tested and found essentially correct, though the diameter of the smaller end seems nearer to twelve thm to thirteen lines. These fragments may indicate the existence of a second species it this locality, or they may represent merely the adult stage of the one first described. The evidence is altogether insufficient to show which of these views is the correct one, thongh the latter is, perhaps, the most probuble supposition.

Nautilus. (Sp. undt.)
Perhaps N. elegans, D'Orbigny, but not of Sowerby. Or, possibly, N. pseudo-elegans, D'Orbigny. \dagger

Shell (or ruther cast) inflated, glohose; maximum thickness not much less than the entire diameter, the proportions being nearly as five to seven; umbilicus either very small or entirely closed, most probably the latter. Most of the inuer septa are crushed ont of shape, lont the outline of the outer one is concave and simple; the position of the siphuncle is unknown. Aperture transversely reniform or sublunate, rather deeply emarginate hy the preceding volution. Measuring from the periphery to the centre of the margin of the next whorl, where the emargination is greatest, the height of the aperture is much less than its width. The surface of the cast is ornamented with transverse rudiating ribs, which at first curve convexly forwards across the sides, and then backwards, so that each one forms a shallow, but rather angular sinus on the periphery. The ribs appear to run exactly parallel with the true outer lip of the shell, and their forwarl curve is

[^3]greatest near the aperture. They are narrowent at the umbilicus, and widen gradually towarin the periphery, where they measure about two lines in width.

Greatest diameter, about seven inches; approximate width of aperture, (which coincides with the muximum thicknesm at a right angle to the diameter) slightly over five inches; height of aperture, in the centre, three inches and seven lines. The specimen being very much distorted, these measurements must be received with caution.

One of the most striking specimens in Mr. Richardson's collection is the large Nautilus described above. Unfortunately this unique example is bally preserved, and very much erushed out of shape. The siphuncle is not visible anywhere, although the fossil happens to be broken in two pieces, in such a way as w expose most of the interior. The distortion is greatest in the chambered part of the shell, so that it is impossible to tell how many septa there were to a volution, or to detime their exact shape.
The species is very neurly related to the Nautilus elegans of D'Orbigny, and to the N. pseudo-elegans of the same author; but it may prove to be distinct from both.

It is clear that the Queen Charlotte Isinnd fossil is not the Nautilus elegans of Sowerby, for in that shell the aperture is said to be "obtusely sagittate, with the posterior angles truncate." The dencription and figures in the "Mineral Conchology" give one the idea of an obliquely compressed shell, with an aperture whose height is much greater than its width. Before the writer was aware that Pietet hil shown that the Nautilus elegans of D'Orbigny and Sharpe is distinct from the N. elegans of Sowerby, the same conclusion had been arrived at after a careful study of the original diagnoses. D'Orbigny describes his N. elegans and N. pseudo-elegans as follows, Italies being substituted for Roman letters to emphasize certain points:-

Nautilus elegans, D'Orbigny (as of Sowerby).

"N. testâ globulosá inflatá, transversim sulcatâ; sulcis incurvis, reflexis, umbilico impresso, non perforato; aperturâ lata, semilunari; septis simplicibus, arcuatis; siphunculo ad tertiam exteriorem septorum partem perforato."

Nautilus pseudo-elegans, D'Orbigny.

N. testâ discoideá, inflatá; transversim undulato-sulcatâ, subumbilicatáa; aperturâ nemilunari; septis arcuntis, in umbilico sinuosis; siphunculo non centrali ad inferiorum limbem septorum adplicato,"

The following remarks are adder to the description of N. pseudo-elegans:-" rien de plus facile que de la confondre extérieurement avee le Nautilus elegans de Sowerby. En effeet les deux enpèces sont lisnes dans le jeune áge, et sillonnées a peu près de la même manière dans l'age adulte: mais elles sont néanmoins ontièrement diffërentes. Ie Nautilus pseudo-eleyans se distingue du Nautilus elegans par son dos plus large, et surtout par ce caractere invariable, que la siphon est placé au tiers intérieur de la hateur de la bouche, près du retour do la spire, au lien de l'être au tiers exterieur ou près du dos, comme il l'est toujours dans le Nautilus elegans."

As the position of the siphuncle is unknown in the specimen from the Qneen Charlotte Islands, the question naturally arises, is it possible to distinguish N. elegans (D'Orb.), N. pseudo-elegans, and closely related specien, by any other characters? Judging by the descriptions in Latin, N. eleyans would seem to be a thicker and more ventricose shell than \boldsymbol{N}. pseudo-eleyans, but the italicised remarks in French, and the figures in the "Puleontologie Frangaise" convey just the opposite impression. Sharpe states that N. elegans (D'Orb.) "is the most globose shell of the group, and has the smallest umbilicus." His figure (Cephalopoda of the Chalk Formation, Plate III., fig. 3) is almost an exact portrait of the specimen obtained by Mr. Riehardson, and the dimensions which Sharpe gives of his fossil ("diameter six and a half inches, brealth five inches,") accord remarkably well with those of the present shell. These statements, as well as the impressions conveyed by the figures, are, however, negatived by the remark that "the two species are so much alike, that the only character to be relied on for distinguishing them is the position of the siphuncle." It follows that the exaet specific relations of the Queen Charlotte Island fosssil cannot be ascertained until more perfeet examples have been obtained. Blanford says that there are fourteen septa to the whorl in N. elegans, (D'Orb.) and that in N. pseudoelegans there are twenty in the same space. In the Queen Charlotte Island specimen it is impossible to ascertain whether the septa were originally distant or approximating.

Pietet and Blanford have shown that the position of the siphuncle in certain European and Indian cretaceous Nautili is not invariable in the same species. Some Nautili, also, which agree in the position of the siphuncle, differ materially from each other in external form. For these reasons there is a tendency among palmontologists to regard N. elegans (D'Orb.) and N. pseudo-elegans as varieties of one species. Still, most authorities have pronounced themselves in favour of their distinctness,
of N. pseudopurement avec ces sont lisses ière dans l'age
1.e Nautilus s plus large, et placé au tiers spires, au lieu oujours dans le
imen from the s it possible to closely related tions in Latin, icose shell than d the figures in newsion. Sharpe 1 of the group, da of the Chalk of the specimen Sharpe gives of nches,") accord ese statements, are, however; to much nlike, ig them is the pecific relations ned until more that there are at in N. pseudoueen Charlotte the septa were
he siphuncle in variable in the position of the rm. For these fard N. elegans es. Still, most ii distinctness,
among whom may be mentioned Pictet, Cornuel and Blanforl, as well as D'Orbigny and Sharpe. Should the latter view be alopterl, the laws of nomenclature require (as Blanford hus pointed out) that D'Orbigny's name should be changed, as it is preoccupied. It might have been a fitting compliment to the Swiss naturalist who first called attention to its distinctive features, to have dedicated the species to him, but Oppel has already called a Nautilus from the Upper Tithonic beds at Stramberg, N. Ficteti. This being the case, the name N. Atlas is proposel as a substitute for that of N. elegans, D'Orbigny. The Queen Charlotte Island specimen may or may not belong to the same spocies.

A Nautilus collected by Mr. Richardson, in 1874, from the Cretaceons rocks of Sucia Island, which is in an excellent state of proservation, (although a little distorted) hears a striking resemblance in many respects to the type of \boldsymbol{N}. Atlas. It is a much less globose shell than the Q. C. Island specimen; its umbilicus is entirely closed, and the siphuncle is situated a little on the outside of the centre of the septa. Eight septa are visible externally in the space of rather more than half a whorl; the ribs on the inner, or nacreous layer of the test, are proportionately broaler than are those of the Q. C. Island shell, and they each form a wide but not angular sinus on the periphery. There is a distinct though not very large excavation round the umbilical callus. Near the aperture, the height of the whorl, outside of the emargination caused by the encroachment of the prececling volution, is not much less than its breadth. The dimensions are about as follows, but no allowances have been made for obvious distortion :-

Greatest diameter, four inches and one line; width of aperture (which is identical with the maximum of thickness) two inches and five lines; height of do., in the centre, eighteen lines.
This fossil will be described more at length in another place, but its prominent characteristics are given in advance for the sake of comparison. The siphuncle of this shell scems to be placed rather nearer to the centre of the whorl than is the ease with N. Atlas. The Sucia Island fossil is very nearly related to N. Atlas, of which it is probably only a variety; the Q. C. Island specimen, on the other hand, may prove to be nearer to N. pseudo-elegans.

The few Nautili of the section Radiati, which have yet been described or quoted as occurring in the Cretaccons rocks of the United States, present curiously close affinities with European species. The apparent specific relations of the former may be thus bricfly expressed, though
an examination of the type apocimens would be necessary for a satisfactory comparixon. The group, ne a whole, may be conveniently arranged as follows:-
A. Umbilicus amall, or entiroly closed.
B. Umbilicus compuratively large.

1852. "Nautilus elegans, Sowerby."

Ramer's "Kreidebildungen Von Texas," page 37, No. 37.
No description or figure of this shell is given, and all that is atated is that " somo imperfect specimens from the waterfall of the Guadaloupe, below New Brauenfels, plainly show the peculiar, undulating, arched ribs on the surface, characteristic of this species."

1860. ivuutilus Texanus, Shumard.

Transactions of the Academy of Sciences of St. Louis. Vol. I., page 100.
As the specimens from which this species was described are mere fragments, which do not show the characters of the umbilicus, it is not certain to which of the divisions proposed above it should be referred.

The shape of the aperture of N. Texanus is not unlike that of N. elegans, (Sow.) but the position of the siphuncle is the same as in N. pseudoelegans, the species with which Dr. Shumard compared it.
1862. "Nautilus elegans, Sow., var. Nebrascencis," Meek.

Proceedings of the Academy of Sciences of Philadelphia for 1862, page 25.
In the paper where this Nautilus is described, Mr. Meek, naturally enough, seems to have taken the correctness of D'Orbigny's and Sharpe's identifications for granted, without further inquiry. The description of the Nebraska fossil, at least, accords much better with that of N. Atlas (nobis) than with Sowerby's diagnosis of his N. elegans. The globose shape, together with the position of the siphuncle in the American shell, are in favour of this view, but it is possible that the varietal name, proposed by Mr. Meek, may have to be raised to specific rank, as the sculpture of the so-called "variety Nebrascensis" is said to consist of ribs which are "five times as broad as the grooves between," and in this respect it differs from N. Atlas, as well as from nearly related species.
y for a eatisconveniently

37.

at is stated is e Guadaloupe, lating, arched
, page 100.
ribed are mere mbilicus, it is : it should be
at of N. elegans, s in $N . p$ seudo
"Meek.
82, page 25.
Ceek,' naturally Orbigny's and inquiry. The ch better with his N. elegans. phuncle in the pssible that the ised to specific nsis" is said to ooves between," as from nearly
1864. Nautilus Texanus (?) "Shumard." (Gäbb.)
" Palaontology of California." Vol. 1., page 59 Plate IX., ligurem 3z. b.
There are some reasons for doubting whether the Californian shell, described and figurod in the work quoted abovo, is correctly referred to Dr. Shumard's species. The siphuncle appoars to be placed differently in the two shells; in N. Texanus (Gabb.), it is said to be siluated above the centre of the whorls, as is the case in N. Atles; in N. Texanus, (Shumard) its position is described as below the centre of the volutions, as in N. pseudo-iegans.
It is most likely that N. Nebrascensis, Meek, N. Texanus, Gubb (non Shumard), and the Sucia Island Nautilus are all forms of one vuriable species.

The discovery of such forms as Nautilus spirolobus, Dittmar, in the "Hallstadten Kalken" (or Trias) of Rossmoos, near the Lake of Hallstadt, of N. Mojsisovicsi, Neumayr, in the Middle Oolite of Poland, and of the N. Asper, Zittel, a species closely allied to the present fossil, in the Upper Tithonic bods of Moravia, has recently proved that the ribbed Nautili are by no means exclusively contined to the Cretaceous rocks, as was formorly supposed. Still, they are eminently eharacteristic of the Chalk Formation, in which they attained their maximum of development as a group.

AMMONITES.

Group I.*—Clypeiformes, D'Orbigny.
Sub-aenus Oppelia, Waagen.-"Geognostisch-Palæontologische Beitrage." Von Dr. E. W. Benecke. Page 250. Munchen: 1869.

Ammonites Prrezianus. (N. Sp.)

Plate II., figs. 1 and $1 a$.
(Perhaps a variety of Oppelia Waageni, Zittel. See "Die Fauna der Aelteren Cephalopoden Fuehrenden Tithonbildungen," by Dr. Karl Alfred Zittel. Cassel : 1870 Plate XXIX., figs. la and l $b_{\text {. }}$)

Shell discoidal, lenticular, thin; umbilicus small; surface ornamented by broad, faint and transverse folds.

[^4]All the inner volntions are covered by the last whorl, excepting only their umbilical faces. Outer whorl nearly flat, or only slightly convex at the sides ; periphery narrowly rounded and obtuse; Inner edges of the volution oblique, almost confluent with the sides, the point of junction being marked by a faint, rounded ahoulder. Aperture narrowly olliptical, deeply emarginate by the preceding volution. The height of the aperture, as measured where the emargination is deopest, is more than twice ite width. Umbilicus small, shallowly funnel shaped, rather deeply conical in the centro, but spreading rapidly and obliquely in the outer whorl, especially near the mouth. Umbilical margin Mrich obsolete, sutures (of the volutions) indistinct, not excavated or channelled.

Surface marked by very faint and inconspicuous, trannorsely radiating plications. Those are undulating, broad and rounded, but not much raised, and are about equal in width to the shallowly concave depressions which separate thom. The folds aro most prominent on the outer half of the sides ; they seem to be obsolete on the periphery and aro cortainly so on the innor faces of the whorls.

The adult and unique specimen figured on Plate II. is much water-worn on the only side in which the septation is visible, and the finer ramifications of the sutures have been obliterated. There are indications of six or seven lobes in the septum nearest the mouth, and of these the four or five inner' ones appear to have been simply toothed but not branched. Those placed near the periphery do not seom to have been very complicated in their structure. The "chamber of habitation" occupies nearly three-fourths of the onter whorl.
Greatest diameior, three inches and nine lines: wilth of umbilicus, as measured from the junction of the sides with the inner surface of the body whorl, nine lines; or, from suture to suture, five lines. Height of aperture, at the point where the emargination is greatest, one inch and nine lines: greatest width of do., ten lines. Depth of emarginution of the outer whorl, eleven lines.
When the drawings were maic, nourly the whole of one side of the fossil was covered by a nodule of shale. After the plates which contain figures of this species were printed, the matrix was removed from the specimen, and some new information was thus obtained which has been incorporated into the above description. The outline of the aperture (figure 1a) was found to be incorrect in two particulars. First, the emirgination is not nearly deep enough, and secondly, the periphery,
(which happens to, he water-worn in the original) is represented as too narrow and acente.

Ammonites Perezuenus in nearly related to A. (Ophelia) subcostaria* Oppel, and particularly to A. (Ophelia) Wangeni of Zittel. The former is represented as having a more rectangular umbilicus than A. Pereziamus as well as fewer and more distant folds on the sides of the outer whorl. Both have thicker shells than the species just described, and A. Wimgeni is depicted as having an entirely smooth surface. On the other hand, the only specimen of A. Peresianus yet procured is a little crushed, and there is reason to suppose that its whorls were thickest near their middle, so that the shape of the shell wan nearly, if not quite, lenticular in its normal state. Even supposing this to have been the case, A. Perezianus is a thinner and flatter shell than A. Waageni, and the difference between the sculpture of the two may be of specific importane. Under all the circumstances, it seems desirable to propose a provisional name for the species, and the one suggester is intended to help to perpetuate the memory of the first discoverer of the islands at which the fossil was collected.
II. is much is visible, and terated. There am nearest the pear to have near the peritheir structure. the of the outer
of umbilicus, as surface of the mes. Height of , one inch and marginution of
one side of the which contain moved from the which has been of the aperture arr. First, the the periphery,

Ammonites Breweries Gabs. - "Paleontology of California," Vol. I., page 62, Plate X.
fig. 7. Also Vol. II., page 130, Plate XX., fig. 5.
The Ammonites from the Queen Charlotte Islands which are believed to belong to this species, present two strongly marked varieties. The specimen represented at fig. $2 \dagger$ is the largest individual of what may be fairly regarded as the typical form, as it corresponds exactly with Mr. Gabb's amended description of his A. Brewerii, although the original figures of the adult have a strongly ribbed surface, whereas that of normal examples collected by Mr. Richardson is either smooth, or oramented only by faint, sinuous, transverse strike. Figure 3, on Plate I., is a portrait of the most perfect of two specimens of what seen/ to be a dwarfed variety of this shell, presenting characters, (such as a comparatively large umbilicus, strong rib -like folds, \&c.) which are usually only seen in much larger individuals. It will be convenient to consider each form separately, and as the only work in which A. Brewerii was described

- "Cieognostich-Palæontologische Beitrage." Yon Dr. E. W. Benecke. Zweiter Band. Heft 2, page 210 Plate XIX., figs. 2-5.
\dagger Ot Plate I.
may not be accessible to some of the readers of these pages, the salient features of both will be briefly particularized.

General characters.-Shell discoidal, compressed, periphery narrowly rounded ; umbilicus rather small, step-shaped and rectangular: surface marked either by flexuous, trims verse stria, or by rib-like folds.

1. Presumed typical form.-Shell discoidal, compressed, but not very thin, the maximum width of the outer whorl being only one third less than its height. Volutions four, the inner ones flat, smooth and nearly two-thirds covered by those which succeed them. Outer whorl with somewhat flattened but slightly convex sides, the greatest thickness being a little below the middle; periphery rounded: inner edge of the volution cut squarely at a right angle to the sides; umbilicus step-shaped, rather less than one-fourth of the entire diameter ; aperture elliptical or narrowly oval, truncate below, higher than wide, deeply emarginate by the preceding volution.
Surface ornamented by faint, flexuous, and slightly raised, transversely radiating striae, which are usually arranged in two sets. What may be conveniently called the primary strike start from the umbilical margin, and pass completely over the sides, but become indistinct or obsolete on. the periphery. Commencing at the umbilicus, their general direction is first a little forwards, then backwards, and again forwards, until at last they form moderately convex but very faint arches over the periphery: Near their junction with the umbilicus they are often seen to be made up of two or even three separate raised lines, which coalesce about the middle of the sides, between which point and the periphery they always become most prominent, fold-like and distant. The secondary stria, which usually alternate with tho primaries, radiate from the umbilicus, but extend only half way across the sides. There is generally a single secondary striation between each pair of primaries, but there are sometimes two, and at others none att all. Besides these markings, there are numerous faint and short stria on the periphery, but these disappear before reaching the sides. The striae on the siphonal orle are much finer even than the secondaries, and seem to be distinct from them.

Greatest diameter of the shell, four inches and two lines: width of umbilicus about one inch. Width of aperture (which is identical with the maximum of thickness) nearly fifteen lines: height of do., outside of the emargination caused by the preceding whorl, twenty-three lines: depth of the emargination, six and-a-half lines.

The above description and measurements refer exclusively to the largest they always adary stria, 3 umbilicus, lily a single e are somekings, there t these disphonal edge distinct from
: width of entical with do., outside -three lines:
specimen collected. Six others were obtained; one a very immature individual, about an inch and a quarter in diameter; and five of an intermediate and almost uniform size, which measure from two to two and a half inches across. The smallest shell is entirely smooth; the medium sized ones are only faintly striated across the whorls. These latter differ from the specimen figured, in the following respects: they are much thinner and flatter proportionately, their periphery is narrower, and their umbilicus is smaller as well as shallower. Such halfgrown shells resemble the Ammonites Haydenii of Cab very closely, but their periphery is not "nearly flat" and somewhat squared, as it is in that species, but narrowly and evenly rounded. Externally there are very few characters by which they may be distinguished, but the septation is said to be different in Californian examples of the two species. The septa are not visible in any of Mr. Richardson's ${ }^{\prime}$ specimens.
2. Dwarfed costate variety. -Figs. 3 and $3 a$ on Plate I. represent the most perfect specimen obtained of this form, the other being a mere fragment. Its greatest diameter is two inches and five lines: the width of its umbilicus, eight or nine lines: the maximum thickness, seven lines. The fossil is, however, considerably distorted. It differs from the more typical form less in shape than in sculpture. The latter consists of simple, transverse and flexuous, rib-like folds, which are most prominent on the outer half of the sides. They form distinct, narrowly rounded, convex arches over the periphery and are faintest near the umbilicus. The elevations are usually narrower than the shallowly concave grooves which separate them. Sometimes a short rib occurs between two of the ordinary ones, but when this is the case it generally forms a short arch over the periphery and does not reach to the umbilicus. The folds also show a tendency to bifurcate over the periphery, and there are some other unimportant and exceptional variations. The greatest thickness of the whorls in this variety is a little above the middle of the sides.

Ammonites Brewerii was first described from the "Shasta Group" of Cottonwood Creek, Shasta County, California, where it appears to be tolerably abundant. Until Mr. Richardson collected the specimens described above from the Islands in Skidegate Chanel, the species had not been obtained from any other locality.

Ammonites difjicilis of D'Orbigny, a French Neocomian fossil, is its nearest European representative. Both A. difficilis and A. Brewerii are very abnormal representatives of the Clypeiformes, but as D'Orbigny and

Pictet place A. dificilis in this section, A. Brewerii is included in it also. The latter paleontologist suss that A. difficilis "makes a transition" to the Ligati.

Meanthoceres, giltel.
 neamayr.)

Group 1I.-Mammillati, Pictet.

Aments Stoliczkanus, Gabb,-Variety spiniferus.

Plate III., fig. 3, and Plate IV., fig. 1.

A. Stoliczkanus, Cab. "Paleontology of California." Vol. II., page 135. Plate XXIII., figs. 16, $16 a$.

Fig. 2.
Fig. 2.-Ammonites Stoliczkanus, Gabby., var. spiniferus. Fragment showing the spinous nature of the tubercles.

Shell thick; whorls wider than high, compressed on the siphonal edge and inner half of the sides; umbilicus not very large, but deep; surface heavily costate; ribs tuberculate, except on the centre of the periphery.

Whorls five, increasing rather rapidly in size, about one-half of the inner ones being exposed. The volutions are always broader than high; in a well-preserved specimen an inch in diameter, they are distinctly
ded in it also. transition" to
age 135. Plate
at showing the

1 the siphonal rge, but deep; centre of the
pe-half of the der than high; are distinctly
though obtusely bicarinate on the periphery, and obsoletely keeled at the sides. With the inereaso of growth the keels disappear, and the whorls become more rounded, until finally the last one assumes a subquadrangular aspect. The inner half of the sides of the body whorl is compressed, the outer half curves convexly and rather obliquely towards the periphery, which is brond and flattened. The umbilical face of this volution is squarely as well as very deeply truneate, and forms a blunted but nearly right angle with the sides. In the last whorl but one, the umbilical face is not straight, but slightly convex, and the angle between it and the sides is rounded off. All the specimens are so much distorted that it is difficult to estimate the proportionate width of the umbilicus with much accuracy, but in the example represented on Plate III., which is not fully grown, it is about one-third of the greatest diameter. In the adult the last whorl inereases very much in height, so that the umbilicus may then be rather smatler in proportion to the shell. The aperture is transversely subquadrangular, the outer angles being broadly rounded; its height is rather less than its breadth, and the emargination of the base is not very deep.
The sculpture consists of broad, but not acute, raised ribs, and these are ornamented with tubercles, some of which originally bore long spines. In the inner whorls the ribs are straight, but in the last volution they are slightly flexuous. In the specimen previously referred to as being about an inch in diameter, the sculpture of the early whorls is well exhibited. At the commencement of the outer volution of this individual, each rib bears four tubercles, but when it is completed there are eight to each rib; the process of a gradual division of each tubercle into two separate ones boing very clearly shown. At this stage of' growth the tubereles are prominent, acnte, and are separated into two sets by a shallowly-grooved space on the periphory. In the penultimate whorl the number of tubercles on each rib is generally twelve, or six on each side, and there are never more than these. They are usually situated at unequal distancos from each other, and are separated by a flattened but not grooved space on the periphery.

It is only just to the artist to say that the spinous nature of some of the tubercless was discovered after the plates which contain figures of this species were printed. While attempting (subsequently) to removo the matrix from a broken example, a fortunute blow of the hammer exposed three long spines, two of which are very perfect. This specimen, which is represented in the woodeut (fig. 2), is a frugment, consisting of about two-thirds of the penultimate whorl, and a portion of the preceding
one. In this instance each spine arises from the inner margin of the smaller whorl ; they are at first pressed a little downwards, and then curve upwards so as to rest against the umbilical wall, though they scarcely reach to its margin above. One of the spines is fully half an inch in length; it is flattoned and rather obtusely pointed. The compression of the spinos and their peculiar curvature are obviously the result of abnormal compression or distortion. Traces of spines were afterwards obsorved in other specimens, but all the additional information afforded is that they sometimes proceed from the outer as well as the inner parts of the sides, that they are occusionally acuminate, with a dilated base and slender point, also that they are often covered up by the whorls as the shell increases in age. In every place where they were traced, they were found to be protected from injury by the support afforded by the inner margin of the whorl next to the one on which they were placed.
Most of the tubercles become obsolete or disappear on the body whorl, excepting only it row of large ones round each umbilical margin, and another of much smaller size, placed about the middle of the sides. The ribs on this volution are alternately bifureating and simple, but they are all of equal length, and bear usually a similar, or rather corresponding number of tubercles. The row of large tubercles round the umbilical margin gives to that opening a distinctly coronated aspect, but those on the middle of the sides are sometimes so small as to be barely perceptible. The aperture of the original of fig. 1, on Plate IV., is about three inches and three-fourths wide, by three inches and one line in height.
Seven specimens of this "strongly characterized" species were obtained, most of which are curionsly distorted. None of them are very perfect, and yet nourly all of the essential peculiarities of the fossil are well exhibited in one or the other, except the outlines of the septa and the shape of the outer lip.
In the prelininary report previously referred to, Mr. Billings says that the specimens just described are nearly related to Ammonites Stoliczkanus, but that they ure "perfectly distinct" from it. The difference between the shells from the two localities seems to the writer to be scarcely of specific importance. A. Stoliczkanus was originally described from a single half grown examplo, about three inches and three quurters in diameter. Apart from the circumstance that some of the tubercles originally bore long spines, (a feature seen so rarely even now that there is no wouder that it was not observed before) Mr. Gabb's description of the
margin of the wards, and then all, though they is fully half an anted. The com. re obviously the of spines were litional informaouter as well as acuminate, with n covered up by lace where they y by the support no on which they
the body whorl, cal margin, and le of the sides. simple, but they or rather corveseccles round tho pronated aspect, b small as to be 1, on Plate IV., inches and one
species were of them are very of the fossil are f the septa and
ir. Billings says mmonites StoliczThe difference ter to be scarcely ascribed from a quarters in dideccles originally hat there is no scription of the

Californian shell applies with great exactness to the present specimens, except in one particular. Each rib in the type of A. Stoliczkanus is described as bearing six tubercles, three on each side of the periphery, but there are usably nearly double that number in the corresponding coste of the fossils collected by Mr. Richardson. Although this might upper to be an important difference, it is doubtful whether it is of more than varietal value. The number of tubercles to each rib is variable in actual specimens, and they show a marked tendency to divide into two or three in the course of growth. Thus, in the last whorl but one of the original of Plate IV., fig. 1, there is a single tubercle on the umbilical margin, another on the middle of the sides, and a third trifid one on the edge of the periphery. The description of the tubereulation of the type agrees so well with some of the Queen Charlotte Island specimens, that the latter are, (for the present at least) regarded as simply a variety of A. Stoliczkanus with rather more numerous tubercles than usual, to each rib.
Pietet's group Mammillati, in which this species is placed, differs from the Rotomagenses chiefly in the absence of tubercles or carnation on the periphery of the shell. It is partly made up of Ammonites taken from that division and from the Dentati. A. laticlavius of Sharpe, from the Grey Chalk of the Isle of Wight, bears a considerable resemblance to this shell, but the whorls of the English fossil are flatter, and its aperture is much higher than wide.

Group III.-Macrocephali, Vo Buck.
Subgenus Stephanoceras, Walden (Pars.)-"Geognostich Palæontologische Bettrage," won Dr. E. W. Benecke, Munchen, 1869. Vol. II., page 248.

Ammonites Loganianus. (N. Sp.)

Type. Plate VIII., fig 2.
Shell compressed, but rather thick; inner whorls entirely covered, except about three-fourths of the last one; * umbilicus of medium size.

The carly volutions are apparently very strongly involute, but the two outer ones are much more loosely coiled. The last whom is obliquely compressed at the sides, which are widest just before they

[^5]commence to descend towurds the sutures; the periphery is rounded but slightly flattened. The aperture is subovate, its base being con-

Fra. 3.
Fig 3.-A. Loganianus, outline of the aperture of a typioal specimen.
cavely emarginate. If measured in the centre, where the omargination is greatest, the height of the aperture is rather less than its width, but as viewed externally the height and width of the whorls are nearly equal.
The umbilictis of the most perfect specimen is rather less than onethird of the entire diameter; its inner face is somewhat straight and precipitous below; its outer margin is evenly rounded. It is deeply excavated in the centre of the shell, but becomes shallower very rapidly towards the mouth.
The surfuce ornameutation consists of primary, trifurcating ribs, which usually altornate with secondary, simple mid shorter ones. Commencing at the sutures, the primaries are at first distant, obtuse und prominent; then at abont a third of the distance across the sides, they trifurcate and pass over the periphery, reuniting at exactly similar points. The points where the primaries begin to trifureate are marked by small elevations, or tubercles.* : The intervening costa are simple and do not extend to the sutures, but become obsolete near the middle of the sides. Sometimes the secondary ribs are absent, and there is rarely more than one between each pair of primaries. Although much worn in the actuul specimens, there is reason to suppose that ull the coste were originally acute; the grooves between them are concave, and a little wider than the

[^6]hery is rounded base being con-
al specimen.
the emargination than its width, rhorls are nearly
less than onehat straight and d. It is deeply wen very rapidly
bating ribs, which s. Commencing and prominent; y trifurcate and its. The points small elevations, lo not extend to he sides. Somemore than one n in the actual wore originally le wider than the

[^7]ribs. As viewed along the siphonal edge, the whole of the eostation is rather fine in proportion to the size of the shell; near the aperture, the greatest distance between the summits of two eontiguons ribs (on the periphery) rarely amounts to as much as two lines, the average being about a line and n-quarter.

The specimen figured, which although in some respects tho most perfeet of the two, is very much distorted, measures about five inches in its greatest diameter, the width of its umbilicus being about eighteen lines. The other is four inches and two lines neross, nod its umbilical cavity is fifteen lines wide.
A. Ioganianus (?) Form A.

Plate IV., figs. 2, $2 a$.
Shell subglolose ; inner whorls entirely eovercil except the outer half of the last one; umbilicus rather small.

Outer whorl somewhat inflated, broadly rounded on the periphery, and slightly compressed at the sides. Umbilical cavity rather more than one-fourth of the entire diameter, deep in the centre and shallow exteriorly. Margin of the umbilicus rounded, its inner face stop but low. Behind the mouth of the shell there is a broad and moderately deep groove or constriction, and the whorl contracts very perceptibly at a short distance from the aperture. Near the sutures there is a shallow sinus on each side of the lip, which is produced into a broadly rounded process on the periphery. The groove behind the mouth seems to follow the contour of tho outer lip, unless the latter once bore lateral lobes, of which there is no evidence. The aperture is transversely arcuate, its breadth being nearly three times as great as its height. "In the middle of the same whorl, before it begins to narrow, the height of the volution is much greater in proportion to the width.

The sculpture consists for the most part of primary ribs, which rise from the sutures, and bifurcate at about a third of the distance across the sides, before passing over the periphery. About eighteen of these can be counted on the outer whorl. The points of bifurcation are not marked by any distinct swellings or tubercles. Occasionally a simple and shorter rib intervenes between a pair of primaries, but the intermediate ribs are often wanting altogether, and when present hover roach to the sutures. At first the costation is comparatively close set and the ribs, with their corresponding grooves, are subangular, but in the last half turn they get wider apart and more rounded. The whole sculpture is very coarse
for the size of the shell; in the only specimen of this variety, whose greatest diameter does not much exceed two inches, the riles are as wide apart as they ure in the largest example of the typical form, which is at lenst four times its size.

Septation unknown.
The exact dimensions of the fossils are as follows: Greatest diametertwo inches and nearly four lines; width of umbilicus, ubout eight lines; height of aperture, five lines; brealth of do., one inch and three lines.

Ammonites Loganianus (?) Form B.

Plate VIII., figs. 1 and $1 a$. -
Shell inflated, globose; the early volutions ontirely concealed; umbilicus very small.

In the only specimen collected, the outer half of the last whorl is much distorted, and compressed in such a way that the sides are partly forced over the umbilical opening. For this reason the exact amount of the involution, the proportionate width of the umbilicns, and the shape of the aperture cannot be very accurately ascertained. Curiously enough, the distortion does not seem to have much affected the rest of the shell.

Only one whorl is visible externally; this is ventricose alike on the siphonal edge and at the sides; its inward curve is also convex, but rather abruptly so near the sutures. Where the distortion is least, the maximum width of the whorl (or thickness of the shell) is nearly equal to threefourths of the greatest diameter. The aperture is obviously much wider than high, though it is difficult to estimate in what proportion. Tho umbilicus is very smull and deep.

The surfice is ornamented with primary, bifurcating coste, and intervening, wecondary, simple ribs. About thirty of the former can be counted on the last volution. They commence at the sutures, bifurcate at about a third of the distance across the sides, and reunite at exactly similar and opposite points. There are no swellings or tubercles on the ribs where they begin to divide. At the commencement of the last whorl the ribs bifurcate at a comparatively short distance from the sutures, but near the aperture this distance is much increased. The secondary costre usually alternate with the primaries, but the former are often absent; when present they encircle the periphery but do not extend to the sutures. Two bifureating ribs are occasionally placed together withont any intervening one; or two simple costa may occur be-
tween vening that a areat f firm regula rounde deeply a little dually times ment o the out Sept
Whe two inc shell) It is regarde three, d a single shape, stand t there i sculptu distant uppear worn, i Form only on peculia On the to one
In m of Sow the she more f obvious
uriety, whose ware as wide t , which is at
test diameter t eight lines ; hree lines.
aled; umbili-
rhorl is much partly forced nount of the the shape of masly enough, rest of the
alike on the x, but rather he maximum tal to threemuch wider n. The um-
coste, and former can the sutures, des, and reno swellings e commencehort distance h increased. the former but do not y placed toay occur be-
tween a pair of primaries. When the latter is the case, onc 'he intervening ribs is unusually long and almost joins one of the primaries, so that a tendeney to bifurcation is then olwervable. The whole of the ribs areat first crowdel and tine (except near the sutures) but at a little distunce fiom the aperture they get much wider apart. They are prominent, regular and acute (though sometimes, under the lens, they appear a little rounded at their summits), and the grooves between them are rather deeply concavo. In the earlier part of the outer whorl, the grooves are a little wider than the ribs which bound them, they (the grooves) gradually increase in wilth, until, near the aperture, they are about three times as wide and much shallower in proportion than at the commencoment of the volution. The ribs, too, are more acute and prominent near the outer termination of the shell.
Septation unknown.
Where the specimen is least distorted the greate t dinmeter is about two inches, and the maximum width of the whorl (or thickness of the shell) is nearly one inch and \mathfrak{a} half:
It is doubtful whether the four Ammonites described above should be regarded us diflerent stuges of growth of one shell, or as two, or even three, distinct species. Form A. and form B. are each represented by a single specimen of about the same size. Notwithstanding its globose shape, and the much groater involution of its whorls, it is easy to understand that Form B. may be the young of the type of A. Loganiunus, as there is little essential difference in the style of costation of both. The sculpture of Form A. is certainly coarser and its ribs are much more distant than is the case in any of the other three specimens; the coste also appear to be more obtuse and angular, but as the surface is much waterworn, it is not safe to attach any importance to the latter character. In Form A. one volution and a half are visible externally, and in Form B. only one can be scen, but this difference may have resulted from the peculiar distortion to which the last named specimen has been subjected. On the whole, it is most probable that these four Ammonites belong to one species, of which Form A. may constitute a well marked variety.
In many respects, Ammonites Loganianus is nearly allied to the A. Gervillei of Sowerby. Form B., in particular, can scarcely be distinguished from the shell figured by D'Orbigny,* as the young state of A. Gervillei. In more fully grown specimens, the differences between the two species are obvious; A. Gervillei is then much the most globose shell of the two, and

[^8]has one more whorl visible externally. The volutions of A. Loganianus are coiled in a very similar manner to hose of A. bullarus, D'Orhigny,* - but the sculpture and shape of each we perfectly distinct.

The Oolitic Maerocephati, an a whole, are said to possess a combluation of characters by which they can generally be distinguished from Gretaceous Ammonites of the same group. In the Oolitic species the shell is more globose, the whorls are very strongly involute, and, as Stolicakn has pointed out, "the later ribs form in tubercle about the middle of the sides, and then divide into two or more ribs." In each of these respects, A. Loganianus has more the aspect of an Oolitic than of a Cretaceous species.

The name proposed for this shell is mended as a tribute, of respect and affection, to the memory of the late Sir W. E. Logan.

Group IV.-Coronarii Buch.
Sub-grnus Strefhanoceras, Waken (Pars,)-"Gegnohtich-Paliontologische Beltrago." Munchen, 1869. Vol. II., page 248.)

\times Ammonites Ricilardsonit. (N. Sp.)

Plate V. Both figures.
Shall thick, inflated; umbilicus wide and deep, conspicuously corrnoted round its inner margin by a row of distant, rounded tubercles.

Volutions about six, very closely and tightly coiled, so that their width is about two thirds greater than their height, much raised at the sides, widest and sub-angular near their middle. The amount of involution is always slight. and decreases exteriorly; the inner faces of the early volutions, and the whole of the sides of the last but one being fully exposed. In the outer whorl the periphery is ventricose and rounded; its curve is confluent with that of the outer half of the sides, which swell up (almost concavely) so as to form a sub-angular ridge about their middle, but nearer to the sutures. From the summit of this ridge, which forms the outer margin of the umbilicus, the whorls slope abruptly and almost precipitously down to the sutures, so as to present a nearly straight (though slightly convex) umbilical face. In the last half turn the umbilical margin becomes more rounded, and the inner face of the whorl is more oblique and spreading. As the greater part of one side of the only specimen collected is worn away, the exact width or thick. ness of the shell cannot be ascertained, but it was probably more than one-

[^9]
f A. Loganianus us, D'Orhigny,*
wa combination hed from Cretuacies the shell is und, as Stolicaka he middle of the If these respects, I of a Cretncoous
ibute, of renpect n.
'alreontologische Bei-
nspicuously coroounded tubercles. b that their width ised at the sides, ht of involution is lees of the early t one being fully cose and rounded; the sides, which fular ridge about mit of this ridge, the whorls slope b, so as to present face. In the last d, and the innor preater part of one act width or thickly more than one-
CXLII., figs, 1 and 2.
half of the entire diameter. The umbilicus is deeply excavatel amil concavely conical, enpecially in the contre, bat it gets shallower and loses its regularly conical shape near the uperture. As compared with the onter whorl, the inner volutions ocenpy rather less than one-half the greatest diumeter of the shell. As measured from two opposite tubereles, the umbilicus is equal to nearily three-fourthe of the whole diameter.
The aperture is transversely menate, and its sides are trincate and subangular.
The last whorl is oruanented with fourteen, distant, raised, rounded tubercles, which encircle the umbilicus. About as many em be counted on the volution which precedes it, and the coronations can be traced even in the earlier whorls. Where the test is preservel, the periphery and part of the sides are covered with closenct, numerous and transverse ribs, (varying from a quarter of a line to a line in width) which are too fine to leave definite impressions on the cinst. These appear to proceed from ench of the tubercles in bundles of about ten or fourteen. The distance from the centre of two contignous tubercles on the outer whorl was found to be about seven lines, and in a spuce of equal width immediately below them, tifteen or sixteen ribs could be counted. These, however, are very unequal in width, even over a very small area, and, of course, are widest neur the mouth.

Grentest diameter of the shell, four inches and fivo lines; extreme width of umbilicus, from the centre of two opposite tubercles, three inches and one line; of the inner whorls, (from suture to suture) two inehes and one line. The bremdth of the aperture is roughly estimated at two inches and nine lines in its widest part; its height is about eleven lines.

This interesting shell, of which only one imperfect specimen was collected, is nearly related to the Ammonites coronutus* of Bruguiere, and A. Blugdeni \dagger of Sowerby. The extreme fineness of the ribs in A. Richardsonii, together with the very slight involution of its outer whorl, will enable it to be distiaguished from either at a glance.

It affords the writer much pleasure to be able to associate the name of its discoverer with this beautiful species. The collection of which it forms a part is only one out of the many additions which Mr. Richardson has made to our knowledge of the geology and palieontology of Canada, in a period extending over thirty years.

[^10]
f.471) thij is m.n. vimilar to Ml Pontg thenes

Group V. Planulati, Waagen, non Buch. (Coronarii, Buch. et nuctorum, pars.)

Subgenes I'erinphinctres, Waahen. - "Geognontich.Palneontologische Beitrage." von Dr. E. W. Benecke. Munchen : 1869. Band 2, p. 248.

(x) Ammonites Skidelaatensfs. (N. Sp.)

Plate VII. Adult and type. Plate IX., figure 1: An immature, but jrerfect apecimen, supposed to belong to the same species.

Fig. 4.
Fic. 4.-A. Skidegatewsix,--Uutline of aperture of the specimen! represented at Plate VII.

Shell composed of many rounded whorls; umbilicus much more than half the entire diameter; surfice regularly costute ; rils acute and separated by broad convex grooves, nltermitely biturcating and simple. Volutions sharply coronated above and below.
The sides of tha inner whorls are fully exposed; the umbilicus is accordingly very wide, it is also rather shallow externally, but is much deeper (appurently) near the centre. Measuring from suture to suture, the inner whorls (collectively) make up rather more than half of the entire diameter. Only the two outer volutious are visible in the largest specimen, the rest being covered by hard and tenacious shale, which could not be removed except at the risk of spoiling the fossil. As seen transversely, the outer whorl is raised at the sides, and slightly compressed at the periphery. Its buse is shallowly and concavely emarginate by the encroachment of the preceding volution. The aperture is about one-third wider than high; its greatest breadth being a little below the middle.

The anid pr rounde termed middle ponding thirty-s At the and tra tubercle circular biturenti is that 0 Occasion suleceod secondar: than the and do r about the In the la a single simple on and irreg both equi narrow si nearly all Soptati The gre abore des type of th bilicus, fro Besides which mo: diate stag these, whi found repr fragments, individual. pens not t the type,

The sculpture consints of transerese raised ribs, which although acute and prominent, we nlways nurrower than the deeply conenve and rounled groover which separate them. What may be conseniently termed the primary ribs, commence it the satures, bifurchte about the middle of the sides, pass over the periphery, and remite at a corresponding point on the other plane of the shell. From thirty-five to thirty-six of these primury costie can be comnted on the last volution. At the point where they hegin to bifurente, they swoll up into murow and transversely elongated elerations, which can weareely be termed tuhercles, at least if that term is used sololy to convey the iden of eircular prominences. Sometimen, especially near the aperture, the bifureation of the primaries is obscure, and the appearance then presented is that of puirs of continuous ribs, separated by one or two shorter ones. Occusionally, also, too bifureating and primary costo immediately sncceed each other, without the intervention of miy secondary rib. The secondary coste are invariably simple, as well as being always shorter than the primaries. They encircle the onter half of the whorls only, and do not extend to the sutures, but become obsolete and disappear about the middle of the sides, just where the primaries begin to bifureate. In the last wholl but one the arrangement of the coste is very uniform; a single bifurcating rib almost invariably alternating with a shorter, simple one; but near the aperture the grouping is much more variable and irregular. As seon along the poriphery, the whole of the ribs are both equidistant and of the same height; they are not separated by a but is much e to suture, half of the the largest ale, which . As seen ghtly comely emargiaperture is ng a little narrow spaee which encircles the siphonal edge, (as is the case in some nearly allied species,) but pass uninterruptedly over it.

Septation unknown.
The groatest diameter of the largest known specimen, (to which the above deseription refers exclusively, and which must be regarded as the type of the species), is soven inches and two lines; the width of the umbilicus, from suture to suture, is about three inche and eight lines.

Besiden the specimen just described, there are six small Ammonites which most probably belong to the same species, although the intermediate stages of growth have not yot been observed. The most perfect of these, which measures about two inches and three lines across, will be found represented at figure I. of Plate IX. The others are mostly mere fragments, but they show that the senlpture is very variable in different individuals of the same size, besides giving other information which happens not to be afforded by more perfect individuals. As compared with the type, the fossil figured on Plate IX. has its outer whorl proportio-
nately more raised at the sides and more compressed on the periphery, The inner faces of the whorl are more oblique and not so evenly rounded, and the umbilicus is rather less than half the entire diameter. These differeneen, however, may be partly due to the distortion which the small specimen has undergone; compression having been effected in a direction at a right angle to the sides. The umbilical cavity is concavely and rather deeply excuvated in the centre, but it gets shallower rapidly as the shell increases in size. In this specimen there are not less than six volutions, and perhaps as many as seven. The costation, in this particular instance, is remarkally coarse for the size of the shell, and the intermediate secondary ribs are almost, if not altogether, absent. On the outer whorl there are twenty-four ribs, each of which'proceeds from the sutures, and bifurcates about the middle of the sides. After bifurcating on one side of the shell, the ribs pass over the periphery, und re-unite (in this instance at ieast) at directly opposite and corresponding points, on the other. The lineur clevations which arise at the points where the ribs bifurcate, are unusually prominent and give the shell a much more decidedly coronated aspect than it bears when it lans attaned to nemrly its full size. Two out of these six small specimens shew a coarse style of ribbing, the ribs being exceptionally prominent and wide apart. Such individuals can seareely be distinguished from the fossil figured by D'Orligny in the "Pateontologie Frangaise" $*$ as the Ammonites Braikemidgii of Sowerby: \dagger In that species the raised protuberunces which arise where the ribs bifureate, alternate with each other across the siphonal edge, instead of being placed at points immediately opposite, but au alternate grouping may also be traced obseurely in some of the Queen Challotte Island specimens.

In the four rematining, the ribs, as they arise from the sutures, are as wide apart as in the others, but thoy either trifurcate bofore passing over the periphery, or clse a single socondary rib alternates with each of the bifurcating primuries. Along the siphonal 'edge, therofore, the ribs in this variety are much more numerons and eloser together than they aro in the other.
In all the spacimens, whether large or small, the sculpture is remarkably similar. The ribs are invariably acute, they are separated by concave grooves which are much wider than the coster themselves, and the

[^11]the periphery, venls rounded, meter. These hich the small 1 in a direction concavely and er rapidly as t less than six this particular and the inter-
On the outer m the sutures, ing on one side n this instance on the other. is bifurcate, are edly coronated size. Two out ; the ribs being can scarcely be "Paléontologie In that species reate, alternate placed at points , be traced ob-
sutures, are as re passing over ith each of the rre, the ribs in r than they are
thue is romarkarated by coniselves, and the
shape of the elevations which give a more or less coronated aspect to the shell, vuries very little in different examples. Assuming that the whole of thesu eecen Ammonites belong to one species, it was at tirst thought difficult to account for the fact that the width (or thickness) of the outer whorl in small individuals was so much greater in proportion to their entire diameter than is the case in more fully grown shells. The explanation of this circumstance is very simple. In a specimen at a comparatively oarly stage of growth, the whorls are so much compressed on the periphery and raised at the sides that the width of the aperture may be twiee or even three times an great as its height. When more nearly arrivel at maturity, the whorls become rounder and their sides compressed, the height of the aperture become nemly equal to its breath, and the result is a great addition to the diameter of the shell, which is not accompanied by a corresponding and proportionate increase of its thickness.

An appropriate illustration of this peenliar mode of growth is afforded by the Ammonites anceps of Reinecke, as figured by D'Orbigny in the "Paleontologie Frangaise." In the Atlas to Vol. Il. of the "Terrains Jurassiques," Plate CLXVI., figures are given of two specimens of A. anceps, one of which is represented as one inch and five lines, and the other as three inches and four lines in diameter. The smallest of these fossils is the thickest of the two, at least if the figures are correct.

Mr. Billings has suggested $*$ that the large specimen which is here regarded as the typo of A. Skidegatensis, is closoly allied to the Perisphinctes tyrannus of Neumayr, \dagger from the "Macrocephalen Kalken" of Brielthal. The two species certainly resemble each other in general shape and in the anount of involution of the whorls, but their sculpture is sufficiently distinct. The outer whorl of P. tyrannus is said to be ormamented with nineteen distant primary ribs, which trifurcate in passing over the siphonal edge. In A. Skidegatensis the ribs are much more numerous, acute and regular.
Ammonites anceps of Reinecke, which also belongs to Waagen's sub-genus Perisphinctes, is still more nearly allied to the present species both in shape and sculpture. The only important difference between them is that in the former the ribs are separated by a narrow space which encircles the periphery, and this is never the case in A. Skidegatensis.

[^12]Ammonites Carlottensis (N. Sp.)

Plate VI.

Fig. 5.
Fig. 5.-Outline of aperture of A. Carlottensis, as viewed transversely.
Shell composed of (apparenty rather few) rounded whorls; umbilicus less than one-half the entire diameter. Volutions encircled by faint, though broad, obtusely rounded or subangular ribs, which are alternately hifurcating and simple. Sides bluntly coronated.
In the only specimen collected, the inner whorls are either covered by the matrix or are wanting altogether. The fossil also has been distorted in such a way as to present nearly an oval shape when viewed laterally, so that the proportion of the umbilicus to the entire diameter varies according to the direction in which it is measured. The same distortion seems to have affected the shape of the outer whorl; at any rate, near the aperture it is compressed both at the sides and on the periphery, while the other half of the same whorl is inflated, the periphery is evenly rounded, though perhaps a little flattened, and the sides are very much raised. As the inner edge of the whorls is usually rounded, there is no distinct margin to the umbilicus; in some places, however, the umbilical face of the whorls is steep, but it is never angular above. Measuring from suture to suture (of the outer whorl) the inner volutions occupy between one-third and one-half of the diameter of the shell. The aperiure is always much wider than high ; the emurgination at its base (caused by the encroachment of the preceding whorl) being moderately deep, or at least, not very shallow.

The outer whorl is ornamented by nineteen primary ribs; these commence at the sutures, and swell out gradually into obtuse, elongated, but more or less roundod tubercles about the middle or near the inner half of
each side, after which they bifurcate widely, but very indistinctly, before passing over the periphery. In the earliest part of the whorl, two simple, secondary ribs, which do not quite reach to the sutures, usually interven between each pair of primaries. Near the aperture the secondary coste disappear, and the ribs as they pass over the siphonal edge become much more distant. As viewed along the periphery, the whole of the ribs are about equidistant, the intermediate ones being as broad and as wide apart as the bifurcations of the primaries. The entire costation is pectinliar in another way; the ribs, though wide, are obtuse and not much elevated, and the corresponding depressions, though broad, are always very shallow. At some distance from the aperture, where the test is preserved, both ribs and grooves are obtusely angular. Nenr the outer edge of the volution they become more obsolete as well as wider, and probably with age disappear altogether.

Septation unknown.
Greatest diameter of the shell, five inches and ten lines; maximum width of umbilicus, (from suture to suture) two inches and five lines. Height of aperture, one inch and three and a half lines ; greatest breadth of do., twenty -three lines.
The above description refers exclusively to the solitary and imperfect specimen collected by Mr. Richardson, which is represented at Plate VI. Although only partially characterized at present, the species seem to possess sufficiently distinctive features to entitle it to the new name which is here proposed for it. The sculpture of A. Carlottensis is not very dissimilar to that of A. (Perisphinctes) tyrannus, but the shape of the two shells is quite different. In A. Carlottensis the umbilicus is comparatively small, in A. tyrannous it is very wide. In the former, when undistorted, the inner whorls together would probably occupy about one-third of the entire diameter; in the latter they would make up more than half. A. Skidegatensis resembles A. tyrannous in shape but not in sculpture, while A. Carlottensis is allied to A. tyrannous in sculpture but not in shape.

Ammonites Laperousianus. (N. Sp.)
 Plate III., figure 3.
 barites

Shell composed of many rounded but slightly compressed whorls; umbilicus about one-half of the entire diameter; surface marked by simple, transverse ribs, and by numerous, oblique, periodic constrictions
 Frond Island, gr eif.inuweombe, 1895 (Soft.): ane pood specimen.

Volutions about six, increasing slowly in size, the sides of the inner whorls being almost completely exposed; outer whorl nearly circular, but a little compressed at the sides, its base being shallowly
from
out colin emarginate by the preceding volution; aperture slightly wider than high.

Surface ormmented with simple, transverse, flexuous ribs, and oblique, periodic grooves or constrictions. As the direction of the constrictions is different to that of the ribs, some of the latter are almost always truncated by the former. In the outer whorl of the specimen figured, there are nine or ten constrictions, each of which is narrow on the periphery and wide on the inner half, at least, of the sides. They divide the ribs into sets in a somewhat uniform way. Neut the aperture there are generally six ribs between each pair of grooves. Of these, the first three are continuous, as is also the sixth, or outer one, which is so oblique as to truncate about one-half of the fifth, near the middle of the sides, and the base of the fourth, near the sutures. Or, it might be said with equal propriety, that the outer rib trifurcates at unequal distances, before passing over the periphery. In each set of ribs, the two outer ones form part of the boundaries of the grooves by which they are separated. Both ribs and constrictions become faint and nearly obsolete on the periphery, especially the former. The constrictions are obviously the remains of former lips, which were sinuous at the sides, and produced into narrowly rounded, or spont-like processes, on the siphonal edge of the shell.
Septation unknown.
Greatest diameter of the largest example, nineteen lines; width of umbilicus, from suture to suture, not quite nine lines.

The description applies solely to the specimen figured, which is the largest of the only two collected. The other one, which measures scarcely an inch across, is comparatively flat and thin, its aperture is much higher than wide, and the ribs and constrictions are not so clearly defined as they become at a more advanced stage of growth.

There is a consideruble resemblance between these shells, which are obviously very immature, and the A. Seranonis of D'Orbigny,* a French Lower Neocomian fossil. D'Orbigny's species is represented as having a thinner and flatter shell than is that of A. Laperousianus at the same age. Young specimens of the latter are indeed nearly as flat as the French fossil, but the umbilicus of the smallest of the two individuals

[^13]A.
Plate

South
She
whit
diam
cons
A.
about
who
whir
faces
mark
thais
than
mode
nimbi
indivi
umbel
less 1
across:
press
sides of the whorl nearly reing shallowly tly wider than
bs, and oblique, he constrictions almost always ecimen figured, narrow on the s. They divide 3 aperture there f these, the first ne, which is so he middle of the it might be said equal distances, 8 , the two outer which they are 1 nearly obsolete ins are obviously es, and produced. iphonal edge of
lines; width of
ed, which is the which measures hin, its aperture tions are not so of growth.
shells, which are igny,* a French sented as having ianus at tho same y as flat as the e two individuals
to CIX;, figs. 4 and b,
, hery
from the Queen Charlotte Islands is then emparatively small. In the outer whorl of A. Laperousianus there are nine or ten oblique grooves or colstrictions, in that of A. Seranonis there are only four.

Septation maknown.
Inscribed to the memory of the gullant Commander of the Astrolabe, who visited these islands in $\mathbf{1 7 8 6}$.
A. Laperousianus probably belongs to Dr. Wnagen's sub-genus Perisphinctes, the young shells of which are said to be murked by perionlical eonstrictions. Other writers regard these marks of arrests of growth as one of the distinguishing features of the Lignti, and the species is evidently one of the connecting links between that group and the Phenulath. Its full charncters have yet to be ascertained.

Group 6. Ligati, D'Orbijny.
Ammonites Timotheanus, Mayor.
Plate III., figures 2, 2a.
A. Timotheanus, Mayor. Pictet et Roux. "Mollusques des Gres Verts," page 39. Plate II., fig. 6, and Plate IIl., figs. 1, 2. Stoliczka, "Cretaceous Cephalopoda of Southern India." Series 3, parts 6-9, pages 146, 147, Plate LXXIII., figures 3 to 6.

Shell composed of rather closely involute, nearly square whorls, which become rounded with age; umbilicus about one-third the entire diameter; surface almost smooth, but marked by distant, periodic constrictions.

As far as can be ascertained from the rather imperfect specimens, about one-fourth of the inner whorls is exposed. In two of these, whose diameter is less than as many inches, the periphery of the outer whorl is flattaned, the sides are obliquely compressed, and the umbilical fices are straight and steep. The squareness of the whorls is very marked at this stage of growth, but the outer angles are more rounded than the inuer ones. Their aperture is subquadrangular, and wider thun high, even if the basal emargination (which is squarish and moderately deep) is not taken into account. The proprortions of the umbilical opening are best seen in these half grown shells. In an individual whose greatest diameter is fourteen lines, the width of the umbilicus is five lines; its margin is bluntly angular. A larger but less perfect specimen, which measures nearly three inches and a-half across, has nearly circular whorls, but they are still a little compressed at the sides. Its aperture is ovately orbicular, but widest
below, and the basal emargination is rather deeply concave. If measured outside of the emargination, the height of the aperture is rather greater than the width; if in the centre, the width slightly oxceeds the rength. In other words, the lateral compression of the whorls is so little, that it is not equal to the depth of the emargination. In the adult shell, the umbilical margin is evenly rounded.
The sculpture consists for the most part of obliquely transverse distant, periodic finrows or constrictions. About six of these can be counted in the outer whorl of each of the specimens; they are directed obliquely forwards on the sides, und then bend backwards so as to form a series of shallowly concave sinuses on the periphery. Besides these, there are a few faint revolving lines on the siphonal edge, and some still fainter strie of growth across the whorls, but both are so inconspicuous that, apart from the narrowly concare constrictions, the surface is practically smooth.
Septation unknown.
The three Ammonites described above agree so exactly with Stoliczka's description and figures of A. Timotheanus, that they are provisionally (at least) regarded av belonging to that species. In the absence of any definite knowledge of the se vtation of the Queen Charlotte Island specimens, their identification is, of course, somewhat uncertain. The memoir in which A. Timotheanus was first described is, unfortunately, inaccessible to the writer. According to Stoliczka, Pictet originally recorded it as a fossil of the "Gres Veris" of Saxonet in Savoy. It was afterwards noticed by D'Orbigny, Gras and others, from the Gault and Etage Albien (Lower Chalk) of the South of France. Hauer thinks that specimens of an Ammonite from the Gault of South-Western Hungary may belong to this species. In India, A. Timotheanus has been collected from the "Trinchinopoly Series of Serdamungalum, North of Anapaudy and nem Ondoor;" also from the "Ootatoor'Series of the neighbourhood of Odinm : Mooraviatoor and Penangoor." It was first catalogued as a British fossil in 1875. In the Quarterly Journal of the Geological Society of London (Vol. XXXI., pp. 277 and 306), Mr. A. A. Jukes Brown says that it is found, though rarely, in the phosphatic deposits of the Upper Gault, or "Etage Vraconnien," at Cambridge.
ly concave. If the aperture is , width slightly pression of the te emargination. ed.
uely transverse of these can be hey are directed ds so as to form

Besides these, edge, and some th are so incoutions, the surface
y with Stoliczka's prorisionally (at absence of any Charlotte Island uncertain. The s, unfortunately Pictet originally et in Savoy. It , from the Gault e. Haner thinks f South-Western Timotheanus has nungalum, North oor Series of the r." It was first y Journal of the and 306), Mr . rarely, in the Vraconnien," at

Group 7.-Fimbriati, D' Orbigny. Sub-genus Lytocerus, Suess. (Thysinoceras, Myatt.) \times Ammonten Filicinctis (N. Sp.)

Plate II., Figa. 2, $2 a, 2 b, 2 c$, and 3.
Shell composed of many, slightly involute whorls, which are nemrly circular in section when half grown, but which become a little compressed laterally with age. Surface ornamented with minute, crowded, transverse, rased lines, and with numerous periodic furrows or constrictions.
Whorls about six \dot{x} or seven, two-thirds or more of the inner ones being exposed. In a specimen (Plate II., fig. 2) which measures abont an inch and a quarter in diameter, the outer whorl is rounded, but compressed slightly and obliquely at the sides, while the downward and inward curve towards the sutures is abrupt and sub-convex. At this stage of growth the aperture is broader than high ; its outline is almost circular, but the base is shallowly emarginate. In a fragment of a much larger and undistorted specimen, the oblique flattening of the sides is more decided, and the outline of the aperture is rather more elliptical.
The true proportions of the umbilical opening can be seen only in the small specimen represented at Plate II., fig. 2, the others are either imperfect or crushed out of shape. In this individual, the width of the umbilicus (the margin of which is rounded and indefinite) is not quite half of the entire diameter.
The whole surface of the test is encircled by fine, transverso, thread-like striz or raised lines, which are scarcely visible to the naked oye and give to the shell a silky lustre. The strie are nearly straight on the periphery, but flexuous on the sides and inner margins of the whorls. They are parallel, simple, and noarly equidistant; never either crenate or bifurcating. Besides the striæ, the whorls are girdled by periodic, transverse furrows or constrictions, which occur at irregular and sometimes distant intervals, in half-grown shells. In the outer whorl of large specimens, these furrows become more numerous and regulaly disposed, so that when viewed at a little distance, the sculpture near the mouth seems to consist of broad flattened ribs, separated by deep, though comparatively narrow, groovos. It requires a closer inspection to detect the thread-like strite on the surface of each rib, but although they (the
strix) are sometimes olliterated on the cast, they are always clearly defined when the shell is preserved. In the last whorl of a large but distorted specimen, seventeen of these rib-like spaces can be counted, which average about a quarter of an inch in width, the grooves being about half as wide. It is scarcely correct to call the spaces betweon the grooves riby, for, atthough the furrows sink deoply below the general level of the surfine of the shell, there are no corresponding elevations above it. Sometimes the spaces are as much as half an inch wide.
The outlines of the septa can only be traced in a half-grown specimen (the original of Plate II., fig. 2) and in it they are purtly covered by the shell. The siphonal ("dorsal") saddle is small, simply conical and entire. Its sides are slightly convex, but they are not toothed or cut. Thero ure two bipartite laterul lobes and saddles, with bifid terminations, on each side. The first lateral lobe, which is the largest, is about as long as the siphonal one. The number of accessory lobes and saddles between the umbilical margin and the sutures of the whorls cannot be made out very satisfactorily, but as the second lateral lobe is placed on the edge of the umbilicus, they must be very few.

Five specimens of this species were collected, three of which are either imperfect or much distorted.

These shells agree exactly, both in shape and sculpture, with the figures and descr:ptions of Ammonites Sacya, Forbes, us given in the "Palæontologia Indica." Stoliczka's illustration of the type of \boldsymbol{A}. Buddha, Forbes, (a synonym of A. Sacya) would serve as a portrait of the specimen represented at Plate II., fig. 3. Yet the septation of the two species is not alike, the principal difference being in the shape of their siphonal saddles. Those of A. Sacya are suid to be tongue-shaped and toothed, ("sella siphonali denticulata, linguiforme") while those of A. filicinctus are conical and entire.
A. filicinctus is also nearly allied to A. quadrisulcatus, D'Orbigny, especially in the outlines of its soptation, the siphonal saddles being of the same shape in each. A. quadrisulcatus was at first imperfectly described (in the "Paleontologie Franģise") from half-grown casts. It has since been illustrated, rather copiously by Zittel, in the "Cephalopoden der Stramberger Schichten," also in the "Fauna der Aelteren Cepha. opoden Fuehrenden Tithonbildungen," and Tiatze has figured a variety of it in the "Jahrbuch der Kaiserlich-Koniglichen Goologischen Reichsanstalt" of Viema, Vol. XXII., (1872) Plate IX-, tigs. $12 a$ and $12 b$. In Zittel's diagnosis of A. qu'drisulcatus no mention is made of any transverse striæ, although some rather distant ones are represented in his

Agure which ratio ext. to one In al sixtee even' cinctu The uppea small the wh and th section appear re-exar were f unture to mer otherw the apl special figure, presum are caul
(Perha Compd figures 6

Shell whorls, and mi Volu compre downw
always clearly of a large but can be counted, ie grooves being ces between the low the general ding elevations nch wide.
grown specimon y covered by the onical and entire. cut. There are ations, on each at as long as the dles between the se made out very the edge of the
which are either
pture, with the as given in the pe of A. Buddha, tof the specimen the two species of their siphonal ped and toothed, of A. filicinctus
tus, D'Orbigny, dles being of the rectly described ts. It has since "Cephalopoden Aelteren Cepha. igured a variety logischen Reich$12 a$ and $12 b$. In de of any transpresented in his

Byures. On the other hand, elose, thread-like stria, similar to those which are so characteristic of A. filichetus, are shown in Tietze's illustrations of A. quadrisulcatus, ulthough nothing is said about them in the text. Zittel says there re never more than four transerse grooves to ench whorl of A. quadrisulcatus, but Tietze figuren a variety with tive. In a large though distorted specimen of A. filicinctus, there we at least sixteen grooves or constrictions on the outer whorl, in the inner ones even they are often very numerous. By this latter character A. filicinctus may be readily distinguished from D'Orbigny's species.

The aperture of the original of Plate II., figs. $2 a$ and $2 b$, presents an appearance which gave rise to a curious mistake. It is almost filled with small white crystals of caleite, but in the centre of the inner margin of the whorl there is a dark coloured ring, (like the rough end of a tube) and this was at first thought to be the siphuncle. On making a transverse soction of the shell, at nearly a right angle to the mouth, a similar appearance was seen in one part of the surface exposed. On a careful re-examination of the specimen with a lens, traces of the true siphuncle were found in the ordinary position on the periphery, and the illusive mature of the other was then apparent. It would have been superfluous to mention this circumstance, but as figure $2 b$ (on Plate II.) might othorwise mislcad, it is as well to state that it was intended to represent the appearance presented by a section of the original of figure 2 , with specinl reference to the position of the supposed siphuncle. In this figure, what seem to be the outlines of the inner whorls, as well as the presumed siphuncle, (which by accident is placed a little too high up) are caused by adventitions matter in the interior of the shell.

Amnonites Chenocostatus. (Provisional name.)
Plate IX., figs. 2, 2a.

(Perhaps a half-grown specimen of A. (Lytoceras) Licbiyi, Oppel.
Compare Zittel's Cephalopoden der Stramberger Schichten," especially Plate [X., figures $6 a, 6 b$ and $6 c$.)

Shell composed of many loosely coiled, and scarcely involute, rounded whorls, whose convex surface is encircled by numerous fine, transverse and minutely crenate raised lines.

Volutions about five or six, nearly circular in outline, but a little compressed at the sides, and then sloping rather suddenly inwards and downwards to the sutures, which are very deeply excavated; periphery
roundel. The amonnt of involution is very small indeed, und the inner whorls ure well exposed. They ocrupy a space about equal to onehalf of the entire dimneter. 'The uperture is ovately orbicular, except at the base which is very slightly emarginate; its height and brendith are nearly equal.
The scalpture characteristic of the sjecies is bent seon in the last half turn. It consists of trmiserse, raised lines, which ure found to be minutely crenate when examined with a lens. They are placed at irregular intervals (of from one-sixth to one-eighth of an inch in width,) upon the convex surfice of the shell, and are not separited by may corresponding grooves or depressions. Nom the aperture there are a few indistinct, but rather crowded revolving lines on the periphery and outer half of the sides. A few faint transverse grooves, or constrictions, (the remuins of former lips) also cross the whorls at irregular but distant intervals. Four of these can be counted on the last volution.

The septa form three lobes on each side, of which the two outer ones at least are very deeply and somewhat numeronsly divided; the second lateral lobe is placed on (or near)' the umbilical border, and a single accessory one on the inner margin of the whorls. The first and second laternl lobes and saddles are bipartite with bifid snblivisions; the dorsal lobe is nearly us long as the first lateral, which is the broadest; the siphonal saddle appears to be elongate-conical, simple and entire; it is about one-half the height of the first lateral; the outer branches of all the suddles are scarcely longer than those of the inner ones.

Greatest diameter, one inch and nine lines; do. of the inner whorls, nine lines; width of the outer whorl rather less than seven lines; height of the same, as measured from the outside, rather more than seven lines.

As there is only one small specimen avuilable for comparison, which does not show the characters of the septation very clearly, it is doubtful whether this shell should be regurded as identical with the Lytoceras Liebigi of Oppel, or as a distinct species. So far as figures of the European fossil enable one to judge, there are certainly some differences between the two at the same age, but these are slight and, perhaps, unimportant. In young shells of L. Liebigi, the amount of involution of the whorls is greater than is the case with those of the Queen Charlotte Island shell. The surface of the onter whorl of L. Liebigi is then marked with three or four transverse raised ridges, which are so nr nminent as to break the curve of its outline; the few constrictions across the last volution of L. crenocostatus are bounded by scarcely perceptible elevations. The latter is also rather the flattest of the two shells. Under all the
cireums at least accorlin

Compar
" Paléo
Plate LXX.
Shell lens that rounded marked

Septat
Dinme
four line
This D'0"bigr other ha very you growth 0 want of : say of w
Not a relations young of A. verruo ontologi. much ap 49 and 5 (implyin synonym the pres includes is certai Ammonit ceras, thi
nd the inner fual to one. rular, except and breadth
the last half found to be e placed at h in width,) ted by any there are a riphery and onstrictions, r but distant
o outer ones ; the second and a single t and second ; the dorsal roadest; the entire ; it is mehes of all
whorls, nine ; hoight of ven lines.
rison, which is donbtful e Lytoceras ures of the differences nd, perhaps, nvolution of n Charlotte hen marked rminent as oss the last tible elevander all the
circumstances it is deemed advisable to keep the two species separate, at least fire the present, and a provisional name has leen suggested, aceordingly, for the fiossil collected by Mr. Rieharison.

Group 8.-Doubtful Species.
Ammonites (Sp. undt.)
Plate III., figures 4, 4a.
Compare A. simplus D'Orbigny.
"Paléontologie Française. Terrains Cretaces." Vol. I., pages 208.9. Atlas, Vol. I., Plate LX., figs. 7-9.

Shell strongly involute, globose, the thickness being alout a fifth less than the greatest diumeter; umbiliens smull but deep; periphery rounded; aperture much wider than high. Surface nearly smooth, marked only by a few lines of growth.
Septation unknown.
Diameter of the only specimen five lines; maximum thickness about four lines; width of umbilicus rather less than one line.
This little shell can scarcely be distinguished from the A. simplus of D'O bigny, as figured and described in the work just quoted. On the other hand, many Ammonites have a grobose, nuatiliform shell in their very young state, so that this fossil is probably only an emrly stage of growth of one of the species previously described, though, owing to the want of a series of specimens of all ages, it is at prosent impossible to say of which.

Not a little difference of opinion exists as to what are the true relations of D'Orbigny's A. simplus, which is generally believed to be the young of some other species. D'Orbigny himself has united it with his A. verrucosus, a deeision in which he has been followed by many paleontologists. Stoliczka disputes the correctness of this view, and with much apparent justice. In the "Index Palrontologiens," (Vol. I., pages 49 and 59.) Bronn places A. simplus, though with a note of interrogation, (implying a doubt as to the propriety of the reference) among the synonyms of A. macrocephrlus, Schlotheim. This suggests the idea that the present shell may be the young of A. Loganianus, nobis. Zittel includes A. simplus in his genus Aspidoceras, and the fossil just described is certainly very like the early stage of Oppel's A. cyclotum. As the Ammonites Stoliczkanus of Gabb has many of the eharacters of Aspidoceras, this little sholl may be the young of it.

Hamite (?) (Sp. melt.)

Plate IX., figure 3.

Compare IIamites elegans, I'Orhigny.
"Paléontolugie Francaise. Terrain" Cretacea." Vol. 1., pages 542 and 543. Atlas, Plate CXXXIII., figs, Ito

A single fragment of a cephalopodous shell, about an inch in length by four lines in diameter, which is referred to this genus with much doubt.

The specimen is quite straight and does not decrease in width very perceptibly: As viewed thasvornely, its outline is compressed ovate, the greatest width of the ovoid being across what is presumed (by analogy) to be the siphonal edge.

The surface is marked by transverse but slightly oblique ribs, which are narrower than the shallowly eomeave grooves which separate them. There are also three pairs of obtusely rounded tubercles on the periphery. The tubercles of ouch separate pair are very close together on the siphonal edge, being scarcely more than u line apart, but the pains themselves are placed at distant intervals along the length of the shell. The arrangement is uniformly as follows:-five simple and nou-tuberculate ribs encircle the shell obliquely, and between each set of five, two or three ribs intervene, which, together, bear a pair of tubercles. Each of the latter are wide enough to embrace two or three ribs. The distance between two pairs of tubercles is generally about one-third of an inch, measuring from the centre of the summit of each.

This species is placed in the genus Hamites, principally on account of the strong resemblance which it bears to the H. elegans of D'Orbigny, of which it may prove to be an extreme variety. Still, the Queen Charlotte Island fossil is flatter than H. elegans, and seems always to have five uninterrupted ribs between those which bear the tubercles In D'Orbigny's species there appear to bo never more than four, and sometimes only two non-tuberculated ribs in each set.

GASTEROPOD.
\times Anauropsis Tenuistriata, (N. Sp.)
Plate IX., figs. 4, Aa.
Shell subovate, spire short, body whorl about threo-fourths of the entire length; umbilicus entirely closed.

Whorls four, the ently onew roumided hut somewhat angular akove and a little compressed at the sides ; the sutures becoming more distinctly impresserl as the shell increases in size. In the last volution and in part of the preceding one, the upper sutural edge is flattened, and forms a bunted angle with the side, the suture itmelf being lightly channelled. Below the narrow sutural shoulder the bady whorl is flattened or slightly concave nbove the middle ; beneath, or about the centre, it becomes moderately ventricose, and then narrows suddenly to the hase. The nmbilicus is completely covered, and this is pantly due to a thickening of the coltrmellar lip above. The aperture is rounded exteriorly, while on the columellar side its outline is concave above and convex below ; the base seems to have been obtusely pointed.
The surfuce ornamentation consists of minute, transverse, ruised strise, which are rather irregular, and show a tendency to become arranged obscurely in bands. These transverse and crowded striations are crossed by similar though much more distant revolving lines, whose disposition is very variable. On the penultimate volution the decussation is extremely minute, but it appears to cover the whole area. On the body whorl the revolving strise seem niways present at or nemr the shoulder, and generally, though not always, in the centre of the volution. In every case the revolving strixe ure much fainter than the transverse ones, and the former are often obsolete.

Total length of the largest specimen, rather more than nine lines from the apex to the base ; height of body whorl about seven lines; maximum width of do., about six and- Ω-half lines.

Seven specimetus of this species were collected, two of which are mere casts. None of them are quite perfect, althongh in two the chauacteristic sculpture is well preserved, and the description is, accordingly, compiled from a general average of the features shown by the whole collectively.

Pseudomelania (?) (Sp. undt.)

A fragment of a large spiral shell, consisting only of about two and a bulf of the basal whorls, which may belong to this genus. The test is partly preserved on the last two volutions, but it is absent on nearly the whole of the upper whorl. Apart from the sutures, there are no spiral grooves on any part of the cast, and the shell is presumably therefore not a Nerincea. The specimen is clearly part of an clongate, subulate shell, with smooth or only faintly striated whorls, and with the sutures not very deeply impressed. The volutions are much flattened, and the last one is thick.
more than twice as high as that which precedes it. The test also is rather
So far as can be ascertained from such an impertect specimen, this species seems to be nearly related to such shells as the Melania Hedding. tonensis of Sowerby,* to the Chemnitzia Athleta \dagger D'Orbigny, and to other similar species described by the latter writer. Sowerby, indeed, deseribes his M. Heddingtonensis as having an intra-suturul carina, but that character' is so often absent that it is not reprosented at all in any of the five figures of the species in the "Terrains Juransiques."

The genus Pseudomelania was constituted by P. De Loriol for the reception of the large, smooth and elongated Oolitic fossils formerly referred to Melania and latterly to Chemnitzia. The so called Chemnitzioe of the Mesozoic rocks may have had tolerably near affinities with such genera as Eulima or Eulimella, but searcely with the minute recent shells, with cancellate sculpture, once referned to Chemnitzia but now usually included in Risso's genus Turbonilla.
The nearest Cretaceons representatives of this species are the Turritella Renauxiana and Eulima amphora of D'Orbigny.

Scalaria Albensis (? ?) D'Oribigny.

Plate IX, figure 5.
Scularin Albensis, D'Orbigny. "Paléontologie Française, 'Ierrains Crétaces," Vol. II., pp. 51, 52. Atlas, Plate CLJV., figs. 4 and 5.

The firment represented on Plate IX agrees remarkably well, so far as it goes, with D'Orbigny's descriptions and figures of the Scalaria Albensis, a Lower Neocominn fossil from the Department of Yonne, in France. The original diagnosis of that species is as follows:-" S . testâ turritá, imperforata, transversim tenuiter striatâ, longitudinaliter oostatâ: costis flexuosis, obtusis, anticè posticèque evanescentibus; spirâ angulo $13^{\prime \prime}$, ultimo anfractu non curinato; uperturî̀ subrotundutâ." The mouth of the only specimen from the Queen Charlotte Islands is broken off, but otherwise the churacters of both seom identical.

On the other hand, there is reason to doubt whether some of the Cretaccous shells placed by D'Orbigny in the genus Scalaria really belong to the fimily Sealida. In an urticle on Cretaceous Gasteropoda, contributed to the "Geological Magazine," for Murch, 1876, the author, Mr. J. Starkic

Giart amil nt th mor orati enys the d grou Mr.
" " Mhural Cot:chology." Plate XXXIX, figure 2. f " l'aléontolegrid Frangatise. T'rrains Jurassighes." Plate CCXLV, Agury d.
sst also is rather specimen, this 'elania Weddingy , and to other indeed, describes t that character the five figures
fol for the recepearly referred to emnitzios of the th such genera ent shells, with usually included
oo the Turritella

Crétaces," Vol. II.,
by well, so fur he Scalaria Alt of Yonne, in pws:-"S. test â naliter costutá: *; spirâ angulo ." The mouth broken off, but
ne of the Gretaearly belong to oda, contributed , Mr. J. Starkje

Gardner, nays of S. Clementina Mich., "I have hut an opportunity of examining the original of D'Orbigny's figure in the 'Paléontologie Frunguise' ut the Feole does Mines, and find that the drawing represents the whorls more convex and inflated than they really are, and the aperture is a restoration. Again, speaking of S. Dupiniana D'Orbigny, the same writer mys :-"The month is very imperfect, and his evidently been restored in the drawing." So rare is it to find the aperture perfect in shells of this group, that out of twenty British species supposed to belong to the Scalider, Mr. Gardner has only seen one with the outer lip perfect.

The distant rib-like folds which become obsolete above and below in Mr. Richardson's specimen, are very unlike the varices of Scalaria or Opaline, which are not only continuous from suture to suture, but which also freequently traverse nearly the entire length of the shell. The relations of the present species are probably nearer to Aporrhais, or even to Potamides or Cerithidea in the family Cerithiadm, than to the Sealidm.
Mr. Gardner justly remarks ("Geological Magazine," February, 1876, page 76), "There is some analogy between fragments of Scalaria and Aporrhais when the last whorl is not present." It is difficult to detect much difference between the present fragment and the shell figured by Sowerby* as Rostellaria elongata, except that the whorls of the former are very much flatter and less conical than is the case with the much better specimens of the same shell recently figured by Mr. Gardner as Aporrhais clonyata.

Possibly the affinities of the Queen Charlotte Island shell may have been with some of the European Wealden or Purbeck fossils (such as Potamides attenuata, tricarinata and harpoformis) formerly referred to Melanopsis but now included in Brongniart's genus Potamides.

(3)
 \times Pleurotomaria Skidegatensis.

(N. Sp.)

Pate IX, figures 6, Ga.
Shell turbinate -conical, wider than high; spire shorter than the body whorl; umbilicus deep but narrow, less that one-third the diameter of the base. Whorls five, those of the spire bluntly and obscurely angulated about the middle. The angulation is scarcely perceptible in the first two volutions, but the two specimens yet obtained are much worn; the apex appears to have boon obtuse. Below the central angle the

[^14]whorls of the spire are compressed in a direction nearly parallel with the axis; above it the flattening is oblique but almost horizontal. The boxly whorl is ulso bluntly but conspicuously ungulated at, or a little below the middle; the upper half is obliquely flattened, and the base is depressed and gently convex. The outer lip is ungular below the middle, also at its base; the columellar lip is nearly horizontal, and together with the outer lip, merges into the commencement of the next volution above. Behind the columellar lip there is a deep but narrow umbilical excavation, but this does not apparently expose my of the inner whorls.
The shell is everywhere encircled by revolving raised lines. Below the mesial angle of the body whorl these are simple, equidistant and regularly arranged. Although moderately prominent, they are obtuse and rounded; the grooves between them are about equal in width to the lines themselves. Upon the whole of the spire and on the upper half of the body whorl the revolving lines are finer, more irregularly disposed and show a decided tendency to arrangement into bundles. On the upper part of the shell the revolving strie are crossed by obliquely transverse lines, which in one instance, at least, are directed backwards. These ure entirely absent on the basal portion. The transverse striations are not interrupted by the revolving lines, except perhaps at the median mugle upon which the band of the sinus is placed, but pass continuously over them. The effect is that the revolving lines have a more or less bended appeanance, and this is particularly well seen above and below the median angle of the penultimate und antepenultimate whorls. The beading is rather distant, and seems to become obsolete near the uperture.
The "band of the sinus" is only seen in a single place on the penultimate whorl of one of the specimens. It is flattened above and below, and its centre is traversed by a single, clearly-defined, raised line; its whole area being marked by close set, fine and delicato striations. These latter are each shuped like a V placed sideways, the apex of the letter being directed backwards. They run almost exactly parallel to ouch other, but are so minute as to be scarecly visible to the naked eye. No distinct murgin ean be traced on either side of the band, but the sculpture of this part of the shell is very imperfectly shown at the best.

Only three examples were collected, one of which is a mere cast. The other two are so much distorted that the exact monsurements could not be aseertained. The shell is only partly preserved on these, and the figures thorefore on Plate IX. ate partly restorations. The specimen
rallel with the al. The body ittle below the e is depressed niddle, also at ther with the olution above. cal excavation, ls.
lines. Below quidistant and rey are obtuse n width to the o upper half of ularly disposed On the upper uely transverse avards. These e striations are at the median ss continuously a more or less jove and below e whorls. The olete near the
place on the ned above and hed, ruised line; icate striations. he apex of the ctly parullel to the naked eye. band, but. the shown at the
here cast. Tho ents could not these, and the The specimen
selected for illustration happens to be distorted in such a manner as to make the transverse striæe appear to be directed forwards, but in another individual thoy certainly incline backwards, and this is probably their normal arrangement.

Actenon, (Sp. undt:)

In bioaking up some pieces of shale from either Maud or Lina Island, six specimens of a small gasterepod were discovered, which perhaps belong to this genus. The test is not preserved in any of them, so that their distinctive features are unknown, and it is also doubtful whether there are two species, or only two different stages of growth of the same shell. Four of these are composed of three whorls, of which the last one is at lenst three times as high as the spire. The general shape is ovate; the body whorl is inflated and evenly rounded above; the sutures are not channelled. In the two remaining specimens the spire is broken, but the boly whorl is narrowly cylindrical and much elongated, it is distinctly shouldered and angular above, and the sutures (of the cast) are deeply grooved. The whole of the specimens have one feature in common, and 'hat is that the last volution of the casts is encircled or impressed by revolving grooves.
No traces of a thickened lip can be detected, and these little shells a: a therefore placed in Montfort's genus Actoon (of which Tornatella, Lamarck, is a synonym) though they may pussibly prove to be Cinulice.

- Acteonina, (Sp. undt.)

A narrowly cylindrical and short-spired shell which very closely resembles some of the European Oolitic Actroninæ, is abundant in pieces of shale from the islands in Skidegate Channel. The specimens occur as mere casts, which have been subjected to almost every variety of compression and distortion. In an average example, about an inch long the body whorl occupies nearly eleven-twelfths of the entire length. It is bluntly angular above, and faintly striated longitudinally. In some specimens the apex of the spire is obtuse, in others it is acute. The umbilicus is entirely closed, and no traces of any plaits at the base of the columella could be detected, though the latter circumstance may be attributable to the imperfect state of preservation of the fossils. "They are indeed in such bad condition that their generic position even is uncertain.

LAMELLIBRANCHIATA.

Marteria (?) carintfera. (N. Sp.)

Plate IX, figure 7.
Shell tumid and ventricose in fiont, narrow and attenuate behind; about one-third longer than high. The thickness at the anterior end equals or slightly oxceeds the height, and the posterior compression is much greater in a lateral than in a horizontal direction.

The superior border is straight, but slopes gently downwards to the posterior end; the umbonal region is swollen and the antero-dorsal margin is raised and rounded. The beaks themselves are anterior, terminal, prominent, incurver' and approximating. The lower half of the anterior margin is truncute obliquely, thongh almost horizontally; its base is rounded, and above the middle it seems to have been produced into a more or less rounded lobe on each side, which extend upwards so as to just touch each other immediately below the beaks. The edges of the valves at this end are a little broken in the only specimen collected, so that the outline of the anterior extremity cannot be very clearly ascertained. The pedal opening or anterior gap is large and wide, it appears to have been nearly diamond-shape, but the upper half probably had concave sides, and was shorter than the lower. The height and width of the pedal opening were apparently about equal.

The posterior margin is obliquely subtruncate, bluntly angular and pointed below, less so above. The ventral border is straight, but trends slightly upwards towards the posterior end; its termination in front is abruptly rounded, and bluntly angular behind.

On each valve a slightly flexuous raised ridge runs obliquely from behind the beaks to:the posterior end of the basal margin, and separates π small, excavated and nearly triangular posterior area, from the central part of the shell. The middle of the valves is also divided by two transversely oblique and slightiy divergent grooves (which pass from the beaks to the ventral margin) into three unequal and differently shaped spaces. Of these, the posterior is the largest, the centre one the smallest, while the anterior space is of medium sizo. The latter is marked near its front boundary by two raised linés, which pass from the beaks to the base, and in so doing cut or divide oft, as it were, the two lobes at the front end from the main body of the shell.

A small portion of the test is preserved on one of the valves, and under
the lens ribs foll
Leng lines ; n A $\sin _{1}$
The s both im anterior reous se their n generic and that
The s that the Teredin pholas.
Parapho two," w that " th Woodwe radiatin umbone of Paral impress

Conra
species has onl
writer groove.'
Parapho
Tryor
ceedings has don
makes n
(such a
oblique
the lens its surface is seen to be minutely and concentrically ribbed, the ribs following the general outline of the shell. erior end ression is ds to the al margin terminal, e anterior is base is ed into a so as to es of the lected, so rly ascerappears to d concave th of the gular and uut trends a front is
from beparates a e central wo transthe beaks d spaces. st, while 1 its front base, and front end and under

Length, three and-a-half lines; greatest height about two and-a-half lines; muximum width (or thickness) about equal to the height.

A single specimen, burrowing into fossil wood.
The solitary example from which the above description was made, is both imperfect and immuture. At present it is not known whether the anterior hiatus was permanently open or closed in the adult by a calcareous secretion. Not a vestige of any of the accessory plates remains, and their number, shape and position have yet to be ascertained. The gencric position of the shell can, therefore, only be inferred by analogy, and that in a very vague and unsatisfactory way at lest.
The somewhat elongated shape, coupled with other characters, indicate that the species should be referreal to the Pholadine rather than to the Teredine, and its relations are apparently either with Martesia or Parapholas. The essential distinction between these genera is that in Parapholas the umbonal accessory valve is " longitudinally divided in two," while in Martesia it is single and entire. Stoliczka* is of opinion that " the distinction scarcoly deserves to be regarded of generic value." Woodward \dagger defines the genus Parapholas briefly thus, "valves with two radiating furrows." Stoliczka \ddagger says "the two furrows running from the umbones towards the periphery are said to be present in all known species 'of Parapholas," and a part of Tryon's diagnosis of the genus § is, "surface impressed by two oblique sulci, extending from the beaks to the margins."

Conrad's genus Parapholas was proposed by him in 1849, and the type species is admitted to be the Pholas Californica of the same author, which has only one groove on each valve! In describing that species the writer says, "valves much contracted submedially, with an oblique groove." Chenu accordingly calls P. Californica a Martesia and not a Parapholas.

Tryon, whose monograph on the recent Pholaducex (in the "Proceedings of the Academy of Natural Sciences of Philadelphia for 1862 ") has done so much to clear up the confused synonymy of the group, makes no reference to the fossil species. As he includes several forms, (such as the Californian Pholas calva of Sowerby) which have two obliqne furrows on each valve, in Leach's gẹnus Mcrtesia as recently

[^15]restricted, and as the type of Parapholas has only one, the Qucen Charlotte Island fossil is, for the present, regarded as a Martesia. It is not improbable that the two genera will ultimately be merged in one, and in that case Martesia, which is much the oldest name, will have to be retained.

Martesia tundens of Stoliczka, from the Cretaceous rocks of Southern India, in its young state nearly resembles the present species, but the Asiatic shell is more elongated and acute behind, and its valves are marked by only one impressed grocve.

Thracia (Sp. undt.)

Compare Lutraria (Thracia ?) carinifera, Sowerby. " Mineral Conchology," Vol. VI., p. 66, Plate DXXXIV, fig. 2. (=Lyonsia (? Thracia) carinifera, (Sow.) D'Orbigny. "Pal6ontologie Francaise, Terrains Cretaces," Vol. III., page 385. Atlas, Plate CCCLXX1II., figg. 1 and 2.

A single imperfect cast, with the surface much abraded, which clearly belongs to the same genus os the fossil with which it has just been compared, and is very much like it specifically. Both are squarely truncate behind; in each there is an oblique ridge or keel which extends from the beaks to the posterior end of the base; and there is a certain resemblance in the general outline of both. Still, the two species are entirely distinct; the beaks in Mr. Richardson's specimen are divergent and wide apart, they are placed also at a considerable distance behind the middle, and consequently the shell is produced anteriorly and very short posteriorly. In Thracia carinifera the beaks are close together and nearly central, while the length of the shell is greater in proportion to its height than is the ease with the species from the North Pacific. The only specimen of the latter is too imperfectly preserved either to permit of a sufficiently accurate description being made, or for a satisfactory comparison with closely allied forms.

Agassiz places Sowerby's Intraria carinifera in the genius Corimya, but Stoliczka, who favours keeping Corimya and Thracia apart, thinks that it may be a Thracia, although he previously states that "fossil species belonging to Thracia propes are as yet only known from Tertiary deposits; those from Cretaceous beds may, with equal probability, be referred to the former genus" (Corimya). Pictet states more positively that it is a Thracia.

Per
Cossiles
Cor
Thre Thraci those o most P right v toward to the as man on the origina text. with th identifi Goldfus Thurm

Most
with T
Dr. Sto
species, having to Corin

67

0, the Queen Martesia. It - merged in t name, will of Southern cies, but the is valves are
logy," Vol. VI., w.) D'Orbigny. Atlas, Plate
which clearly st been comrely truncate onds from the resemblance rely distinct; wide apart, middle, and posteriorly. arly central, eight than is specimen of a sufficiently parison with

Corinıya, but hinks that it il species beary deposits; Cerred to the that it is a

Thracia, (Spl, undt.)
Perhaps Corimya (? 'Thracia) Nicoleti, Agassiz. "Fludes critiques sur les Myes Fossiles." Livraison IV., page 272. Plate XXXVII, figures 1.6.

Compare also Corimya Studeri Ag. (=Tellina incerta, Thurm.)
Three broken and distorted casts of a typical specien of Corimya (or Thracia) whose shape and surface markings ure undistinguishable from those of the Corimya Nicoleti figured in the memoir above cited. In the. most perfeet of these specinens there are two narrow grooves on the right valve, which run obliquely from the hinge margin, behind the beaks, towards the upper part of the posterier end, but which are nearly parallel to the superior border behind. These of course indicate the presence of as many raised lines on the inner surface of that valve. Similar markings on the interior of the valves are not shewn quite so distinctly in the original illustrations of C. Nicoleti, nor is anything said about them in the text. Still, Mr. Riehardson's specimens agree in every essential point with the description of that species, but they are so imperfect that their identification is uncertain and must be so until a better series is obtained. Goldfuss' figures of Corimya Studeri, under the name Tellina incerta, Thurman, are also ver: ke the Queen Charlotte Island shell.

Most palæontologis' nav, agreed in uniting Agassiz's genus Corimya with Thracia of Blainville, although this view was opposed by the late Dr. Stoliezka. If the two genera are to be kept separate, the present species, with its compressed rather than inflated form, and especially in its having "two long ribs running from the beaks posteriorly," belongs rather to Corimya as re-defined by Stoliczka, than to Thracia proper.

Pleuromya (?) Carlottensis. (N. Sp.)

Plate IX, Figure 8.

Shell slightly inequivalved, moderately convex in front, concavely attenuate at the sides behind. Outline elliptic ovate, short and narrowly rounded in front, produced and bluntly pointed at the base, posteriorly; length rather more than a third greater than the height.

The beaks are situated at a distance of about one-fourth from the anterior end; they are wide, but not very acute; their apices are curved inwards and a little forwards. Behind the unbones the hinge line is nearly straight but somewhat concave, its general direction is downwards. The ligamental area is lanceolate in outline, but not very clearly defined,
although there is in faint angularity which extends from the beaks to the posterior end of the hinge margin. The posterior end is broken but it seems to have descender in a gently convex, oblique curve to the ventral margin, which is very broadly rounded. In front of the beaks, but below them, there is a concave, but not very deeply excavated or definitely margined, lunular arca; the anterior extremity is narrowly rounded, but slightly angular below.
Surface strongly and concentrically ribbed; the ribs rather obtuse and separated by deep, concave grooves.
Greatest length of the shell, one inch and eight lines; height, one inch one line and a half; maximum width or thickness, not quite eight lines.
The only specimen is a somewhat distorted cast, which is imperfect at the posterior end.
The shell is provisionally included in Agassiz's genus Pleuromya, as rostricted or re-defined by Torquem, on account of its general shape and strong concentric costation; although it may be a Panopoea. Morris and Lycett, in thoir monograph of the Great Oolite Mollusea, and other writers who have accepted their conclusions, have reunited Pleuromya with Myacites of Schlothoim, and group the latter genus in the Anatinido. Stoliczka considers the former part of this hypothesis to be an "inadmis. sible generalization of characters," and believes that Terquem has sufficiontly proved the distinctness of Agassiz's genus Pleuromya. Pictet in his "Traité de Paléontologie," (Vol. III., p. 360) goes still further than Morris and Lycett, and unites Myopsis, (Agassiz), Pleuromya, (Agasssiz), Homomya, (Agassiz), and some other genera, with Panopoea; he also places the latter genus (with Pholadomya) in his family Myacide.

Admitting, for the present, that Pleuromya may be a good genus, it seems to be capable of division into two well-marked sections. In the first, the beaks are placed very far forwards, and the surface is strongly costate; in the second, the umbones are situated near the middle, and the vailves are only striuted concentrically. Pleuromy a Carlottensis probably belongs to the first of these divisions, which contains some species which have been roferred to Gresslya.

The whole of the Mesozoic Anatinidm or Myacide, (for the same genera have been placed in both families by differont writers), are very imperfectly understood, nor is this circumstance to be wondered at. Although abundant in and eminently characteristic of the rocks of that epoch, the specimens usually met with are little more than badly p. eserved casts, from which the whole of the thin test has been removed. The microscopical characters of the shell, the nature of the hinge teeth and of the muscular
mpres Is the sessil, Purthe huch:
beaks to the broken but it o to the ventral raks, but below d or definitely ly rounded, but ther obtuse and eight, one inch ite eight lines. is imperfect at

Pleuromya, as

 neral shape and ea. Morris and nd other writers Pleuromya with the Anatinida. be an "inadmis. at Terquem has uromya. Pictet oes still further iz), Pleuromya, with Panopea; amily Myaeidr. yood genus, it pns. In the first, trongly costate; and the valves robably belongs bies which havethe same genera we very imper. d at. Although that epoch, the erved casts, from e microseopieal of the muscular
mpressions can rarely be ascertained, or evell the true surface markings. st the whole of the above remarks apply with full force to the present bossil, it may be easily imaginod that its generie position is doubfful. Firther, the only specimen yet colleeted has had its original shape so nueh altered by compression that the specifie description may have to e materinlly modified or altered, when better examples have been btained.

Pholadomya ovuloides. (N. Sp.)

Plate IX, figure 9.

Shell swollen and ventrieose in front, rapidly decreasing in thicknoss ohind; height more than one-third less than the length; outline sub- vate. The superior bordor is straight and nearly horizontal, if viewod aterally, but asseen from above it is concavely iutlected on each side, and the result is that thero is a well-defined, narrowly lanceolate, oxeavated sseutcheon. The inflection is so decided as to prosent the appearance of in obtuse ridge on each vulve, and both of these extend in a slightly conrex curve from behind the umbones to the posterior end of the hinge line, whieh is sunk below their level. The umbonal region is much inflated, but the beaks themselves are not very large, and do not project mueh bove the hinge margin; they are situated very near the anterior exremity, but are not quite terminal; their apiees are incurved, approxmating, and point very slightly forwards. In front of, but just under the beaks, the hinge line is short, straight, and oblique, with a distinetly lowawurd slope; there is no lunule. The anterior prolongation of the pinge line is mostly eoncealed by the upward swell of the beaks, so that in some aspects there appears to be a concave lunular deelivity. The anterior end is angular a little above the middle, subtruncate in the centre, and somewhat rounded at the base. The basal margin is regularly semiovate (that is, on the supposition that the ovoid be divided in the direction of its greatest length) the most prominent part being about or behind the middle, the upward trend being greatest posteriorly. The posterior end s uarrowly rounded, and judging by the lines of growth, a little angular It is junetion with the hinge border above. In front and below, the valves ceem to have been nearly elosed ; behind they gape very slightly.
The surfaee is marked by concentric rith or rib-like folds, which are eparated by narrow grooves. Both are very irregular in their disposition, and ure ofton partly divided longitudiually, so that they are rarely rontinnous from end to end. There are also a fev, very faint, radiating
lines, about twelve in number, whieh cross the concentrie ribs, but whir a do not give a nodular appearance to the sculpture. Theve radiating stria can only be seen in a rather stroug light; they are mont conspicuous on the upper surface of the valves, and become obsolete near the base, also at the anterior end.

As the above dencription was made from a mere cant, it is probable that the sculpture of the test was much more decided than it is in the only specimen now accessible.
Greatent length, about nineteen lines; maximum height nourly twelve lines ; extreme width or thickness, eleven lines.
This fossil belongs to the second of Agassiz's divisons of the genus, the "Pholadomyes avec un Aire Cardinale Circonscrite,"* also to the fifth section of that group, the "Pholadomyes Ovalaires." \dagger

Among European forms its analogies are with such species as P. modiolaris \ddagger and P. ovulum \S of A gassiz, particularly with the Iatter. In the first, in broad groove traverses the valves obliquely near the anterior end, and this is not present in P. ovuloides; in the second, the hinge line is not produced much beyond the umbones in front, nor is the anterior margin angular above; the opposite being the case in specimens of P. ovuloides.
In the Cretaceous rocks of North America there are several species of Pholadomya, which bear a considerable resemblance to P. ovuloides, and the Pholadomya papyracea of Meek and Hayden, || from the Upper Cretaceous of Chippeway Point near Fort Benton, on the Upper Missouri, in particular has a very similar shape, and almost exactly the same sculpture. Still, P. papyracea is a much more compressed shell than P. ovuloides; the nnterior end of the former is not angular above; and the hinge margin of P. papyracea is "not inflected so as to form a defined false area." The inflection of the hinge margin of P. ovuloides is very decided, and this feature alone will serve to discriminate between the two species.

[^16]Compare of Arts and Meek's " H_{1} Missouri Co enpecially 2

Shell eo in front, leaks, wh not very hinge line lunule, an obtuse $\mathbf{m a}$ is broudly but the up the most r but nbrupt above and

The sur faint cone valves are

Grontes beaks to tl
The di L. subundo of the lat (nt Plate the presen

* As this outline ls give
bw, but whir a diating strill nspicuous on te base, also is probable it is in the
arrly twelve
10 genus, the to the fifth
species as y with the liquely near the second, front, nor is the case in
eral species P. ovuloides, the Upper the Upper tost exactly compressed not angular ected so as margin of rve to dis.
II. a, figs. 1-6.

Also, "Report By F. B. Meek.

Lecina. (Sp. undt.)
Plate IX., fig. 12. ${ }^{\circ}$

Fia. 6.
Compare Lucina subundata, Hall and Meek. "Memoirs of tite Ameriean Aeadensy of Arts and Sciences." Cambridge : 1856. Puge 384, Piate I., figs. 6, a, b. Also, Meek's " R'port on the Invertebrate Cretnceous and Tertiary Fossils of the Upper Missouri Country." Washington : 1876. Page 133, Plate XVII., figs, 2, a, b, c, d, e, f; especially $2, f$.

Shell compressed, thin, sub-circulur, but more or less angular; broad in front, narrow behind; length rather greater than the height. The beaks, which are phaced a little on the posterior side of the middle, are not very small; they project distinctly ubove the highest level of the hinge line, and wre directed forwurds. There is no clearly defined lunule, and the escutcheon is merely a linear lanceolate groove, with obtuse murgins, for the reception of the ligament. The sluperior border is broully triangular; the anterior side is wide and somewhat squared, but the upper ungle is slightly in advance of the lower, and the latter is the most rounded off of the two. The basal margin is gibbous in front, but abruptly contracted behind; the posterior side narrows rapidly both ubove and below; its extremity being squarely truncate.
The surface is so much worn that the only markings visible are a fow faint concentric strie of growth; the churacters of the interior of the valves are unknown; the test is extremely thin.
Greatest length of the only specimen, nine lines; height, from the beaks to the base, about eight lines; maximum thickness, four lines.

The differences between this little shell and some examples of L. subundata are very slight. The posterior half of the large individual of the latter species, figured by Mr. Meek in the Report quoted above, (at Plate XVII., fig. 2, f, ulmost exactly corresponds with that of the present fossil, but the shape of the anterior side of the two shells is

[^17]nomewhat different. In L. subundita the firont hall of the sumerior horrter is reprenented an nearly horizontal, nond the miterior side as brondly romades; wherens in the specimen now under consideration the hinge margin in tront in oblique, and the anterior side sub-qumbrate. Such a slight variation in outline cun sempely he regurded an of npecific value, but the fossil just deseribed is too imperfect to be satisfuctorily idontified.

Althe :alult deseribe nurrow nbsence differen pliceed of it in
of I. su precisel
L. occi stages such m Charlot of L.
fig. $3, b$,
contre, 1

Shell subangu length r The b the ante and sun no lunu almost produce and the unbroke margin. deeided is broadl the hind the supe line, anc centre of
the superior terior side as sideration the sub-qualrate. an of specitic satisfuctorily
"Proceedings of as I. ventricosa. Upper Missouri
ly rounded in eight. Beaks carcely raised order slightly abruptly so nt, contracted s very bluntly ed concentric he hinge and wn.
nade is much frowth, the nirteen and a lines; actual

Although it is almont certain that this shell is mothing nore than tho ulult stage of the preceding sjecies, it hus heen thought botter to describe the two specimens sepmrately. Both are broad in front and narrower behind; they agree, also, in other characters, nuch an the absence of a defined lumule, and the shape of the escutcheon. The only difference of any consequence is the position of the beaks, which are phaced behind the centre in the small specimen, and a little in advance of it in the larger one. But Mr. Meek's tigures of different specimens of L. subundatio and L. ventricosa show that thene two apecien vary in a precisely similar way. The same writer doubts whether L. subundata, L. occidentalis and L. ventricosn are more than vurieties, or diffe ens: stages of growth, of one species, and it certainly seems probable that wuch may be the ense. The lurger of the two Lucine from the Queen Charlotte Islands has almost exactly the whape nf one of the spocimens of L. ventricosa as represented by Mcek, (Report cited, Plate XVII., fig. $3, b$, bis.,) except that the beaks of the latter are placed behind the centre, and that its posterior ond is sub-truncate.

Mate IX., fig. 10.
Shell moderately compressed, ovately triangular, hantly pointed or subangular about the middle in front, and a little below it behind; length rather greater than the height ; test very thin.
The beaks, which are placed at about one-fourth of the distance from the anterior end, are of medium sizo; their apices are directed forwards, and sunk a little below the highest level of the hinge line. There is no lunule, and the escutcheon is a narrowly lanceolate groove with almost vortical sides. The posterior half of the shell is somowhat produced und sub-angular below the mildle; the superior border behind and the margin of the posterior end arc anited in one bold and unbroken convex curve, which extends frow the beaks to the ventral margin. The downward direction of this curve is, howover, most decided below the termination of the hinge line. The basal margin is broadly but unevenly rounded, the f:ont half being most projecting and the hinder half rather more contracted. Below the beaks, in front, the superior border doscends obliquely in a straight or slightly convex line, and forms a sub-angular junction with tho ventral border at the centre of the anterior end.

The external sculpture cousints of very fine and close set concentric strife. The markiugs on the interior enn only be traced, and that very ohncurely, on the right valve of one of the custs. In this valve there are ludicutions of three cardinal teeth, which diverge widely from above downwards. The anterior tooth is oblique and almost longitudinal; the centre one is short, triangular, and nearly trinsverse to the hinge line; while the posterior tooth is long, oblique aud directed lackwards. The pallial impressions seem altogether obliterated.
In an average specimen, the length is rather more than fifteen lines; the height, in the centre, is thirteen lines; and the thickness through the valves, six lines.
Nine or ten specimens wore obtained by Mr. Richardson, three of which are quite perfect, with the sholl preserved on both valves. The outline of the species is very variable, some specimens being nearly ovate while others are subtrigonnl. C. subtrigona is a flatter shell with a more triangular form than C. Deweyi of Meek and Hayden,* and C. orbiculate of Hall and Meek \dagger has the posterior side more broadly ana evenly rounded. The figure in Plate VIII, represents a variety in which the muterior and posterior onds are not nearly so much pointed as usual.

Callista. (?) (Sp. undt.)
Plate IX., fig. 11.
Shell compressed, but rather tumid in the middle; very inequilateral ; outline elongate ovate; length about a fourth greater than the height; test very thin. The beaks are situnted very near to the anterior ond, but are not quite terminal ; they are small and point forwards, but their apices do not rise above the highest level of the hinge border. There seems to be no lunule proper, and the escutcheon is a narrowly lanceolate deep groove, which is bounded on each side by a sharp ridge. Behind the beaks the hinge line is almost straight, and its downward curve is very gentle; the posterior end is narrowly, and the basal margin broadly rounded. Immediately bolow the beaks, in front, a short and concave lunular declivity extends to a little above the middle of the

[^18]anterior being ne, and the p by the b height be
The su of growt pressions same num
Length nine lines
A singl and a frae
This lit Callista t Sowerby, that it wo with such likely to
Besides very poor of these a cations of the Glossi which me has much but that s paratively thin and t

Unio Hul XXX., fig.

[^19]ncentric lat very ve there m above nal; the ge line; 1s. The in lines; through three of s. The nearly 1 with a 1,* and idly ana riety in inted as
anterior end, beneath which the latter is narrowly rounded. The beaks being nearly terminal, the anterior portion of the shell is very short, and the posterior much elongated. Apart from the irregularity caused by the beaks, the genoral outline is almost that of a pure ovoid, the height being rather greater in front than behind.
The surface is marked by rather coarse and unequal concentric strix of growth, but the sculpture is mueh eroded. Judging by the impressions on a broken cast, the hinge teeth seem to have been of the same number and shape as those of the preceding species.
Length of the most perfect specimen, one inch; height, in the middle, nine lines; maximum thickness, five und a hulf lines.
A single example, with the test imperfectly preserved on one valve, and a fragment of the cast of another.
This little shell appears to have nome distant analogies with the Callista tenuis of Hall and Meek, * and with the Venus sublovis of Sowerby, \dagger but the generic position of the present fossil is so uncertain that it would be a waste of time to speculate upon its specific relations with sueh imperfect materials at hand for comparison. It is just as likely to be a Tapes or an oval Cyprimeria as a Callista.
Besides the two Callistre just described, there are a few large casts in a very poor state of preservation. Judging only ky external form, some of these at least may have belonged to the Veneridm, although no indications of the pallial sinus characteristic of that family as opposed to the Glossidm, can be traced in any of them. The most perfect specimen, which measures two and a half inches in length by two inches in height, has much the general shape of Cyprina ovata of Meek and Hayden, \ddagger but that species has a less swollen umbonal region, and its test is comparatively thick. That of the Queen Charlotte Island shell is extremely thin and fragile.

Unio Hubbardi, Gabb.
Plate IX, figure 13.
Unio Hubbardi, Gabb. "Palæontology of California," Vol. II, pages 190.91, Plate XXX., fig. 85.

[^20]Perhaps $=$ Unio Aduncu*, Sowerby. "Mineral Conchology," Vol. VI., page 190, Plate DXCV., figs. 2, 2.

Shell convex, elongated; outline ovately triangular or ovately wedge shaped; anterior side short and rounded; posterior side long and bluntly pointed at the extremity; length greatly in excess of the height. Beaks moderately large, compressed at almost a right angle to the sides of the valves, incurved, pointing alightly forwards, and plaeed at a distance of about one-fourth the length from the anterior end. Lunule none; ventral margin straight, or a little concave behind the middle, more prominent uader the beaks, and curving up regularly in front. Posterior side very variable in shape, usually moderatoly elongated and subtriangular, but sometimes much more lengthened and narrowly attenuate. In the typical form the hinge margin slopes convexly and rather rapidly downwards from behind the beaks, and the posterior extremity still more abruptly so, the latter being bluntly pointed below. The normal contour of this part of the shell is elongately sultriangular, two of the sides being gently convex and the central angle rounded.

In an exceptionally lengthened variety the posterior side is narrowly attenuated and wedge shaped; the hinge border descends obliquely in an almost unbroken straight line, and the posterior extremity is narrowly rounded.

A blunt ridge extends downwards and backwards from the beaks to the posterior end of the base, and in so doing separates an obliquely flattened area from the rest of the shell. The ligament is external and proportionately rather narrow.

The surfaee is marked by coarse and irregular lines of growth; the beaks, which are often much eroded, are undulately corrugated when perfect.

Out of thirty specimens collected by Mr. Richardson, twenty-nine have both valves, with the test, preserved, and the ligament even is visible in some. In every case, however, the posterior extremity, which is the thinnest and therefore weakest part of the shell, is broken off. Sometimus the surfaee of the test is partly covered by a thin film of pyrites.

The only detached valve collected, a right valve, having been soaked a long time in water, an attempt was made to remove the matrix thus softened and to expose the hinge teeth. Although the rather thick test broke in pieces during the operation, it was found that bcsides the ordinary cardinal teeth, there was a longitadinal groove in the right valve, for the reception of a corresponding lateral and laminar tooth in
the left. Margarit

Estima lines; ac maximu

Probal
and one eroded) o

The sh
tion of
instance
show the much sh usually original straight a posterior

The lo described Nanaimo by Mr. H and to wh but valual past." T fields of mistake. observer in the la these :sla not ouly near Cow in them.
The elo is barely the Weald to be ratl rently rat ing parts not appes importanc

67

 and bluntly rht. Beaks ides of the listance of oone; venmore proPosterior 1 and subtattenuate. her rapidly emity still Che normal two of the s narrowly bliquely in is narrowlye beaks to 1 obliquely sternal and
rowth ; the gated when
-nine have s visible in hieh is the off. Somef pyrites. been soaked natrix thus - thick test besides the the right har tooth in
the left. The shell, therefore, is clearly neither an Anodonta nor a Margaritana.
Estimated length of a fairly typical specimen, two inches and nine lines; actual height of do., from beaks to base, one inch and nine lines ; maximun thiekness, one inch and three lines.
Probable length of a much more elongated individual, three inches and one line; actual height from benks to base, (the beaks being much croded) one inch and eight lines; thiekness, scarcely fifteen lines.

The shaded part of the figure on Plate IX. is intended as a representation of the elongrated and attenuated variety of this species. In this instance the dotted lines are not ulded by why of restoration, but to show the shape of another individual. The majority of speeimens are much shorter, and the downward slope of the anterior extremity is usually more decided. Mr. Gabb's partly restored drawing of the original type is slightly inaccurate; the hinge border behind is too straight and its downward inclimation is not sufficiently expressed. The posterior end is too wide and its upper margin not convex enough.

The locality from which Unio Hubbardi was first obtained is thus described by the author of the species: "A single specimen, from the Nanaimo Coal Mine, Vancouver Island, Chico Group, kindly loaned me by Mr. Hubbard, of the Pacific Mail Stoamship Company of San Francisco, and to whom I dedicate this species, in recognition of the unostentatious but valuable services he has been rendering to scienco for a series of years past." The statement that this fossil was found in the Cretaceous Coal fields of one of the Islands of the Vancouver group, is probably a mistake. At any rate it has not boen recorded by any subsequont observer as occurring in that region, nor can any trace of it be found in the large und important collections mude by Mr. Richardson at these islands during the past five years. On the other hand, it is not only one of the commonest specios in the Carbonaceous Shales near Cowgitz on Graham Island, but it is the only molluse yet detected in them.

The elongated and attenuated variety of U. Hubbardi described above, is barely distinguishable from the Unio Aduncus of Sowerby, a fossil from the Wealden Formation of Tilgate forest, in England. U. Aduncus seems to be rather straighter at the anterior margin, and its base is apparently rather more gibbous under the beaks than are the corresponding parts of the Queen Charlotte Island 'shell, but these differences do not appear to be constant, and in any case are scarcely of specific importance. The figures in the "Mineral Conchology" are taken from
broken examples, and the descriptions of the species are very short and indefinite.
The posterior pointed extremity of the English specimens are broken off, just as they are in the shells described above. In North America, as most collectors are aware, the pointed ends of the valves of living Unionidæ are often bitten off by muskrats and other animals, whose instinct tuaches them which is the most fragile part of the shell and how best to yet at the (to them) luscions morsel inside. In the case of the fossils, tuwever, the fracture is probably accidental.

Shell moderately inflated, elongated, scaphoid or subarcuate, very inequilateral; anterior end short and rounded; posterior side producied, cuspidate and bluntly pointed above. Beaks large, projecting, recurved, anterior, nearly terminal. Lunule none; posterior area (of the two united valves) broadly ovate lanceolate, with a rounded margin. Hinge border, behind the beaks, straight or slightly concave, sometimes with a very gentle downward inclination, which bccomes a little more decided at the tip of the beaked posterior extremity. Ventral margin broadly rounded, but the upward curve is always greatest behind. The short anterior end is always much wider than the posterior extremity, and the margin of the latter is convex below and almost straight above. As measured in the centre, behind the beaks; the height is less than half the length : the thickness or convexity is nemrly equal to the height.
Surface boldly ribbed, with a very singular and complex style of cos. tation. At the antericr end the general direction of the ribs is almost horizontal, but near the margin they are curved, and ultimately straighten and trend upwards. In the basal half of the shell, however, they are either undulated or broken up into a series of zigzags. Thirteen or fourteen of these horizontal ribs commenced at the margin of the anterior end; then, near the middle of the valves, five or six of them suddenly bend upwards at a sharp angle, and become either transverse, or at length incline a little forwards. About one-balf of the ribs which proceed from the anterior end are not continuous, but are distinctly truncated by the upward bend of those which reach to the superior border. This is most obvious in the umbonal region, for on the beaks the first five anterior ribs are cut off, as it were, by the upward bend of the sixth. Below

To this the anterior coster seem alternately continuous and interrupted.

Towards the posterior end, the ribs are trausverse and cross the valves
y short and are broken th America, es of living mals, whose hell and how case of the
rcuate, very te produced, ag, recurved, (of the two rgin. Hinge times with a nore decided rgin broadly The short mity, and the t above. As than half the height. style of cosibs is almost ply straighten hey are either or fourteen of or end; then, bend upwards agth incline a sed from the ed by the upThis is most five anterior sixth. Below errupted. in a rudiating manner, the radii being directed backwards. At their junction with the outer border of the hinge area, these posterior costre are narrow above and widen symmetrically to the margin below or behind.
The posterior area is ribbed longitudinally; but the coste are curred and follow its general outline. At first they are very narrow, and attain their maximum width at the point farthest from the beaks. In some specimens the ribs whieh traverse the valves behind bifureate with those on the posterior area, and at the extreme tip of the beaked end the direction of both is not far from parallel.
The sculptare of this distinetly characterized species is subject to considerable variation. In one speeimen the transverse ribs which proceed from the anterior margin, are bent into a series of zigzags before they take their final upward turn. In another distorted example the same ribs traverse fully two-thirds of the shell before they bend upwards, and their angles lie in the direction of a line drawn obliquely from the beaks to the base of the posterior end. In the majority, the longitudiual and transverse ribs occupy each about one-half of the surface, and the angles of those whieh so suddenly alter their course are placed in the direetion of an obliquely concave line which might be drawn from the beaks to a little behind the middle of the base. Again, in one instance the coste on the posterior area bifurcate distinctly with the transverse ribs on the main body of the shell, in other examples the latter are truncated by the former. In all cases, however; the ribs in front, thongh they trend upwards, and their course is more or less broken, are nearly longitudinal ; on the posterior area they are decidedly so, while on the beaked posterior end and on the hinder part of the umbonal region they are transversely radiating.

Greatest length of the specimen figured, twenty-one lines; height in the centre, behind the beaks, nine and a half lines; thickness, nine lines.

Seven specimons were collected, some of which are a good deal distorted.

A curious little Trigonia of the Scaphoid group, easily recognized by its very peculiar seulpture. The only species with which it might be confounded is the Trigonia Vau of Sharpe* from Secondary and probably Jurassic rocks in South Africa. The shape of these two

[^21]fossily is almost identical, hut the sculpture of each is very distinct. In Trigonis Vau, the ribs at the anterior end ineline obliquely downwards before they change their course; in T. diversicostata their general direc. tion is either longitudinal or upwards, but the most striking difference is in the maskings on the posterior area of the twenshells. In T. diversi costata that region is boldly and longitudinally robled; in T. Vau it is transversely striated and "divided into tom parts by a silight longitudinal rílge."

Trigunia. (S_{1} undt.)
Plate X., figure 2, 2a.
Shell compressed, elongate, subtrupaitorm, narowez i behi id ; anterior end very short posterior prodnced; length much greater than the height. Beaks small, anterior, subtermimal, slightly recowed, not much elevated above the superior border. Limule ncue ; posterior area thatened laterally, witl a rounded margin, made up of two elongately subtriangular spaces, ofe on each side of the hinge line; ligament external, short, thick, prominent and transversely striated. Hinge line straight, sloping gently downwurds; posterior end obliquely subtruncate. Anterior end almost straight, but curved a little outwards; antero-ventral margin broally rounded; base line convex in the middle, struighter, und curving muel, more gradually upwards behind.
Out of nine specimens on which the test is partly preserved and a number of imperfect casts, none shew the true eharaeters of the whole of the surface ornamentation. The original of fig. 2, on Plate X., gives the clearest idea of the normal shape of the shell, besides showing the sculp. ture of the beaks and posterior area. Fig. $2 a$, on the same Plate, is a representation of the most perfect of four distorted individuals which have been compressed laterally, and whose exterior is either worn, exfolitied, or partly covered by the tenacions matrix. The only information afforded as to the sculpture of the main body of the shell, is that supplied by the four last mentioned examples. In these there appear to be about thirteen or fourteen obliquely transverse, concavely, curved rows of separate raised tubercles. The whole of the rows commence at the outer edge of the posterior area, and they all run obliquely downwards and forwards. Rather more than half terminate at the anterior margin, but just before reaching it they each turn abruptly upwards. The upward bend at the front mary;in consists only of a change of direction of the last tubercie, and there is a solitary intervening one, at
y distinct. In ely downwards r general direc. king difference - In T. diversi in T. Vau it is ulight longitu.
chi ad ; anterior than the height. much elevatel Hattened latery subtriangular nal, short, thick, , sloping gently ior end almost nargin broally curving much
reserved and a of the whole of te X ., gives the wing the sculp. tme Plate, is a lividuals which ther worn, ex only informa3 shell, is that there appear to cuvely, eurved s commence at bliquely downit the anterior aptly upwards. of a change of vening one, at
this end, between each of the two rows. The rest of the rows curve obliquely from the posterior area to the ventral border. One specimen shews very coarse and concentric raised strise of growth, with corresponding grooves; also that the tubercles are longitudinally elongated. It is possible, indeed, that instead of rows of distinct and separate tuberclee, the true sculpture may have consisted of oblique ribs which are interrupted and made tubercular by their being erossed by the concentric grooves just described.

The posterior area is transversely striated, and in one individual there is a faint longitudinal groove, bordered by an ohtuse ridge, which runs the greater part of the length of its outer margin. Oceasionally there are a few scattered tubercles in this region, but these are often absent, and when present are generally, though not always, most numerous near the beaks.
As none of the specimens are perfect or undistorted, it is not possible to give sufficiently exact measurements.
In 1873 Mr. Richardson collected a solitary specimen of a Trigonia at North West Bay, Vancouver Island, in a very fair state of preservation, which, in the writer's judgment, is scarcely more than a variety of Trigonia Tryoniant of Gabb.* Judging by the examples deseribed above, the differences between the Vancouver and Queen Charlotte Island shells seem slight, but the resemblance may be more apparent than real, and may be mainly due to a want of knowledge of the distinctive sculpture of the latter.
The general shape, and the surface markings on the posterior area, are essentially the same in both. In the Vancouver fossil the central part of the valves is traversed by fifteen or sixteen oblique ribs, which commence at the outer limit of the posterior area. Nine of these terminate at the anterior margin and six cross to the ventral border, and the ribs increase more and more in their distance from each other towards the posterior extremity. The costa are crossed by concentric and coarse grooves which give a subtubercular aspect to the ribs; in the umbonal region the tubercles are entirely distinct and separate. The upward bend of the tubercles just before reaching the anterior margin, and the occurrence of a single isolated one alternating at that end with cach continuous series, two features which seem to be characteristic of the Queen Charlotte Island specimens, cannot be traced in the Trigonia from Vancouver. These are the only differences of any consequence that can be observed

[^22]betweon the specimens from the two localities; but, as has alrendy been pointed out, the exact nature of the surface ornumentation of these from the islands in Skidegate Channel has yot to be ascertained.

Distorted examples, like that from which figure $2 a$ on Plate X . was drawn, might be mistaken for the Orogon species doubtfuily referred ly Gabb* to the T. Gibboniana of Lea; but the normal shape of the two shells is quite distinct. The specimens deseribed by Dr. Len and Mr. Gabb clearly belong to the section Quadrate, while the Queen Charlotte Island fossils would be more correctly placed umong the Clavellate, whieh by some writers are united with the Scmphoidea.

Fotida. (Sp. midt.)
Compare Yoldia nasuta, Gabb. "Palwontology of California," Vol. I., page 216, Plate XXXII., fig. 287, and Vol. I1., pages 58 and 108.

Shell, or rather cast, compressed, moderately thin, elongated; benks prominent, recurved, placed a little in front of the middle. Curdinal margin slightly convex, sloping gently downwards in tdvance ; concave, and at length curving upwards behind. On the east, a blunt ridge, which extends from the beaks to the tip of the posterior extremity, marks out a lanceolnte, escutcheon-like depression, und a similar but more acute ridge in front, defines another aren of the same shape, which apepresents the lunule. These appearances, however, ure prohably due to the thickening of the hinge plate on anch side of the ligument for tho reception of the teeth. Margin of the miterior end narrowly rounded or subangular about the middle; ventral border broadly rounded, but eurving upwards more decidedly behind than in front; posterior end moderately produced, narrow and bluntly pointed above.

Surface marked with very filue and closs set concentric striations, which aro scarcely visible without a lens; hinge teeth numerous, not very small; pallial impression undistinguishable.

Greatest length of the only specimen, about three and-a-half lines; height, from beaks to base, rather more than two lines; thickness through the valves, not quite one line and-a-half.

A solitary cast of a probably immature individual, with a small portion of the test preserved on one of the valves.
The posterior ond of the present fossil is narrower, and more pointed above, than is the corresponding part of Yoldia nasuta, and at present

[^23]this is shells. collect ison. the ed Angel makes Tertia on the Califor same Richar been o litholo Cretac Post \mathbf{P}

A ca species The im defined specific

Two ventric beaks, It diffe Cretace identic perhap re-defir

Shel thickes part of
alretuly boen of theso from

Plato X. wus y roferred liy o of the two Lea and Mr. sen Charlotte - Cluvellate,
page 216, Plate
gnted; bouks le. Curdinul ace ; concave, blunt ridge, or extremity, a similar but shape, which prohnbly due iment for tho wly rounded rounded, but posterior end
ic striations, merous, not
a-half lines; ; thickness
ith a small aore pointed at present
this is almost the oniy difference that can be detected between the two shells. At the same time only one example of each has yet been collected, so that thero is not sufficient material for a critical comparison. Y. nasutic was originally described from " n single specimen in the collection of the Californian Acadeny of Sciences, labelled Los Angoles." In Vol. Il. of the "Paleontology of California," Mr. Gabh makes the "unqualified statement" that the species is undoubtedly Tertiary," but expresses a doubt of the correctness of the locality on the label. If the writer of these pages is not misinformed, the Californian Acadomy has in its possession a collection of fossils from the same part of the Queen Charlotte Islands as that visited by Mr. Richardson, and there is a bare possibility that the two fossils may have been obtained from the same district. Mr. Gabb's assertions that the lithological characters of \mathbf{Y}. nasuta " place it outside of all the known Cretacenus, and that its geological horizon is probably either Miocene or Post Pliocene, are, however, by no mcans in favour of this hypothesis.

Nucula. (Sp. undt.)

A cast of the right valve of a moderately convex, ovately triangular species of Nucula, with the anterior (and longer') side partly broken off. The impressions of the numerous anterior teeth are very clear and well defined, so that there is no doubt to what genus the shell belongs, but its specific peculiarities are entirely unknown.

Cucullea (?) (Sp. undt.)

Two broken and water-worn casts of a large, elongated and very ventricose specios of Cucullea (?) with tumid and very prominent beaks, which are placed a little in front of the centre of the hinge line. It differs materially in shape from a shell which is abundant in the Cretaceous rocks of Vancouver and Sucia Islands, and which seems to be identical with the Oucullcea truncata of Gabb. The latter species, and perhaps both, scarcely belong to Lamarck's genus Cucullcea, as recently re-defined, but have more of the character of Trigonoarca, Conrad.

Modiola. (Sp. undt.)

Shell elongated, narrowly oblong, slightly curved; very ventricose, thickest in the direction of a line which might be drawn from the upper part of the beaks to the base of the posterior end. Superior border,
very gently archeal or broadly rounded; busal margin concave in the
much 1 most p atraigh nider 0 althous tortion promin largo, a end, in margin the jun The in though point. are flat test con grooves
Great nine l:n the ouly beaks to whole 0 very we
The ously di only on have be partiall somewh not flat normal its beak under t due to t

In 18
served
at Tat

[^24]mapa it is
neave in the uncate below nity om the hinge ss is obtusely , inner face. he hinge, mad
ric striations ce inches and lines ; muxi
as most of the ght, while the ff. The other , with a very ows the shape ossions are not nd the surface owth, but the of the present ted specimens f the species assert, exactly long priority. ought lest to

Iwald's "Lethes
Vol. 1., page 187, figg. 92, a. b. c. n the umbona posterior side
much longer, its margin rathe arrowly roundel ; base bromily rourded, most projecting in the middle, Hinge borver, behind the beaks, almost atraight and horizontal: hinge area flattened at a right angle to the sides of the valves, or a little concave. There in no defined escutcheon, although the beaks are subcarinate behind, in consequence of the distortion which the specimen bas undergone. Ligament external, large and prominent, extending along most of the length of the hinge line. Beaks large, anterior, terminal, curved inwards and forwards. At the anterior end, immediately under the beaks, there is a deep inflection of the margin of each valve, and an ovately cordate sinus is thus formed by the junction of two sunken auricles, as represented at Plate X., fig. $3 a$. The inflection is probably of the nature of a byseal emargination, though no actual opening can be detected between the valves at this point. The inner faces of the sinus are perpendicular, and the auricles are flattened at a right angle to the sides of the shell. Surface of the test concentrically costate; the ribs rather fine, and narrower than the grooves between them.

Greatest length, abont two inches; height, in the middle, one inch and nine l'nes; muximum convexity, eleven lines. The greatest diameter of the only specimen is in the direction of a line drawn obliquely from the beaks to the posterior end of the base. The shell is preserved on the whole of the right valve, and on part of the left. The sculpture is not very well shown, but there are no traces of any radiating stris.

The above description is intended to apply exclusively to the curionsly distorted fossil represented on Plate X . In this specimen, (the only one collected) the general direction of the compression appears to have been laternl, but also a little oblique, so that the valves have been partially displaced. The beak of the right valve, accordingly, projects somewhat beyond that of the left, und the left valve is quite as flat, if not flatter, than the right. It is scarcely nccessary to add, that in the normal state the left valve is much the most convex of the two, and that its beak overhangs that of the right. The elongated shape of the sinus under the beaks, and the blunt ridges behind them, are also obviously due to the compression just described.

In 1875, Mr. G. M. Dawson collected about fifty or sixty well pre served casts of an Aucella, which is undoubtedly the A. Piochii of Gabb, at Tatlyaco Lake,* in British Columbia. A careful study of these

[^25]foanils has led to the following conclusion ... - 14 , that the distorted Aucella from the Queen Charlotte Islands, alav belongn to Mr. Ginbbie species, and necondly, that Aucella Piochii itwelf is mist probably con. spocific with the European A. Mosquensis, that is, if Eichwald's synonymy is to be trusted. The writer has not nccess to the volume of Loonhard and Brown's "Neues Yahrhuch," in which A. Mosquensis wan first described, nor has he been able to nee any Enropean examples of the spocies; but some of Mr. Duwson's hest specimens almont exactly correspond with the Avicula Fischeriana, an figured and characterized in the "Palaontology of Russia," which latter shell is allonitted to be the same as A. Mosquensis.
According to Mr. Gubb, Aucella Piochii is "very characteristic of a series of shmles of the Shasta Group, found from Mount Diablo, at various points along the east fice of the Coant Range, to the north end of the Sacramento Valley. Two or three good specimens from Washington Territory, east of Puget Sound, were presented by Mr. Samuel Hubbard to the California Academy of Natural Sciences. In Colusa County, east of Clear Lake, I found this shell forming almost the entire bulk of some beds, interstratified with the white limestones.' At Tatlyaco Luke the rock is also largely made up of ensts of this species, apparently to the exclusion of every other fossil ; in the Queen Cbarlotte Islands it seems very rare. In Mrr. Richarlson's 1872 collections from Vaacouver Island, there are two specimens of A. Piochii labelled "from loose pieces near Victoria," and Mr. G. M. Dawson has recently found another example in a boulder on the same island.

Aucella Mosquensis has boen recorded from many localitios in the northern part of the Russian Empiro, and, according to Nordenskiold,* it occurs alse at Spitzbergen. It appoars to have been a grogarious mollusk, and is often met with in considerable numbers. Eichwald states that on the margins of the River Janza, in the city of Moscow, there are banks of shells composed almost entirely of this spocies. Its exact geological horizon has been the subject of much discussion, and is still doubtful. In the "Geology of Russia," (1845) D'Orbigny says that it is characteristic of the "etage Oxfordien." Eichwald, in the "Bnlletin de la Société Impériale des Naturalistes de Moscou for 1861 and 1862," and later in the "Lethea Rossica, 1867," Vol. II., page 520, places it in the Upper and Lower Neocomian. Writing in 1864 and

[^26]1865, Tr possibly entitled dnted 18 series, al clusion Ladwig A. Mosq

Eichw Fischor, varieties in sculpt not been of the strinted, less dist

In the Mr. Gal Nevada, only reg to the A should The Call D'Orb resembl Inoceran Americe that Ino Islands, by 10 n Lake. an oblid cnused always nate bet
; " Bu
: Idom
If " Oe
the distorted (o Mr. Gabbis probably con. liwald'n syuo. he volume of Mosquensis was examples of Imowt exactly aracterized in ted to be the
cteristic of a nt Diablo, at the north end ccimens from onted by Mr. Sciences. In rming almost o limestones." ensts of this in the Queen n's 1872 col of A. Piochii . Dawson has sland.
alities in the ordenskiold,* a gregarious s. Eichwald of Moscow, species. Its ission, and is nny says that in the " Bulor 1861 and ., page 520 , in 1864 and

1865, Trautschoid* claims that A. Mosquensis is a Jurassic fossil, ponpossibly of the horizon of the Kimmeridge clay, though in a paper entitied "Die Schiedelinie Zwischen Jura und Kreide in Russland," \dagger dated 1875, the smase writer is inclined to phee it a little higher in the series, and to make it of abrout the age of the Porthand Oolito. A conelusion similar to the one last cited had been arrived at by hudolph Ladwig \ddagger in 1874 , who expressel the opinion that one of the varieties of A. Mosquensis at least is a Tithonic form.

Eichwald § thinks thit Aucella Pallassii Keysorling, A. concentrica Fischer, A. crassicollis Koyserling and A. Caucasia Von Buch, are only varieties of \boldsymbol{A}. Mosquensis basod upon slight and unimportant differences in sculpture and external shape. The correctness of this opinion has not been disputed, but it is interesting to observe that while the surface of the test of the whole of these nominal species is concentrically striated, that of A. Pallasii and A. Caucasia is marked ulso with more or less distinct rudiating lines.

In the " Proceedings of the Culifornian Academy of Sciences for 1864," Mr. Gabb described a fossil from the auriferous slates of the Sicrra Novada, on the Mariposa estate, as Lima Erringtoni. Mr. Meek || not only regards this shell as an Aucella, but says that it "is so noarly allied to the A. Pallasii of Koyserling," that he " wonld not bo surprised if they should prove to be identical whon direct comparisons can be made." The Californian shell has radiating as well as concentric stria.

D'Orbigny and Eichwald have both noticed the remarkably close resemblanco which exists between casts of Aucella Mosquensis and Inoceramus concentricus, and there is just the same similarity between American examples of the latter shell and Aucella Piochii. It happens that Inoceramus concentricus is rather abundant at the Queen Charlotte Islands, also, that the specimens are only well-preserved casts; and it is by no means ensy to distinguish these from the Aucelloe from Tatlyaco Lake. On the right valve of the casts of the Aucelloe there is generally an oblique and decply-channelled groove immediately under the beaks, caused by the sudden inflection of the valves at this point, and this is always absent in the Inocerami. Still, it is scarcely possible to discriminate between casts of very young examples of the two species.

[^27]If the supposition that Auceila Piochii is merely a synonym of A. Minsquensis should prove to be well founded, the species has a very wide geographical distribution, and a somewhat extended range in time. A. Erringtoni may also be only another variety of this protean shell.

8 Meleagrina amygdaloidea, (N. Sp.)
Plate X., fig. 4.
Shell inequivalved, left valve moderately convex, the right slightly flatter; outline broadly elliptic-oval; height about one-third greater than the iength. Beaks rather small, curved forwards and downwards, placed a little in advance of the centre of the valves. Escutcheon linear lauceolate, subcarinate at the margin, filled up, except at the extreme ends, by the thick ligament which projects above it in the centre. Hinge border wingless, convex near the beaks, then sloping obliquely and rapidly downwards. The posterior margin is broken, but it appears to have been straight, and it forms a subangular junction with the hinge line above. Anterior margin descending obliquely and widening outwards in a shallowly cuncave curve which extends from the beaks to a point opposite to the termination of the hinge line behind; very slightly convex in the middle. The base, together with a small portion of the lower part of the two sides, has almost exactly the shape of the widest end of a broad ovoid.
The surface of the test, which is very imperfectly preserved, appears to be marked with faint, distant and rather irregular concentric striæ, or plications.

Height, two inches and six lines; length, one inch and nine lines; thickness, allowing for a part of the shell which is wanting on one valve, one inch.
A single specimen, with the postericr margin broken, but which shows the large external ligament, and the test composed of an outer, fibro-prismatic lajer, and an inner nacreous lining; a combination of characters almost peculiar to the Aviculine.
On the whole, this wingless Avicula is probably a rather aberrant species of the Lamarckian genus Meleagrina, but it may prove to be the type of a new sub-section. It is true that the shortness of the hinge suggests affinities with Pseudoptera, as recently re-defned by Meek,* but

[^28]ym of A . very wide time. A. 11.
t slightly fater than ds, pluced ar lauceo. e ends, by ye border d rapidly lhave been ne above. n a shal. pposite to ex in the art of the f a broad

, appears

 striæ, or
ne lines;

 ne valve,at which an outer, ation of aberrant to be the he hinge sek,* but
the shape of the present shell is not no oblique, and its valves are not so decidedly unequal in convexity as in typical examples of that nulrgenus.
M. amygdaloidea' seems congemeric with a fossil from the Cretaceons rocks of Vancouver Island, described by Mr. Gubb* an Meleagrina antiqua. The differences between the two npecies are, however, tolerably clear. In M. antiqua, the height is not much greato: than the length, the beaks are terminal, and the hinge line is atraight and almost horizontal. In M. amygdaloidea, the height greatly exceeds the length, the beaks are sub-central, and the hinge margin is convex and very oblique.

Inoceramus concentricus, Parkinson.

Inoceramus concentricus, Sowerby. "Mineral Conchology," Vol. III., page 183, Plate CCCV.
Inoccramus concentricus, Goldfuss. "Petrefacte Germaniee," Vol, II., Plate CIX. figs. $8 a-c$, but not d and e.

Inoceramus concentricus, D'Orbigny. "Paléontologie Française, Terrains Cretaces," Vol. III., page 506, Plate CCCCIV.
Inoceramus concentricus, Pictet. "Traité de Paléontologie," Atlas, P!ate LXXXII., fig. 18.

Twenty five specimens of an Inocerumus, apparently referable to a single speeies, were collected by Mr. Richardson at three localities. Twelve are from the lower shales of Maud and Lina Islands; five from rocks of the same horizon on the sho:es of a small bay south of Christie Bay; and eight from the upper shales on Gruham Island, about three miles to the north-eunt of the village of Cowgitz. They are the only fossils procured from the two last-mentioned localities, which are indicated on the map by the letter F .
Eight of the examples from Mand and Lina Islands are sufficiently perfect and undistorted to enable, them to be identified with some certainty as the Inoceramus concentricus of European authors. Although nothing more than tolerably perfect casts, the obovate outline, the convexity of the left valve, with its prominent and nemi-spiral beak, and the flatter and smaller right valve, so churacteristic of I. concentricus, are very clearly shown. These undistorted fossils vary both in shape and seulpture; oblique specimens, which are regularly costate, might have served for the originals of Goldfuss' figures; while others, again, with a more nearly equilateral contour and irregular concentric striation, correnpond better with the illustrations of J'Or'bigny ard Pietet.

[^29]Four of the Inocerami from Mald and Lina Islands, and all from the other localities, are either so imperfect or so much crushed ont of shape that it is impossible to determine satisfactorily to what species they belong; still, as stated above, it is most probable that they aro all I. concentricus. -
I. concentricus is abundant in the Cretacoous rocks of many localities in Europe. It is most characteristic of the Gault, but is found also in the Upper Greensand. It has not yet been recorded as occurring on the mainland of North America.
The species was first described by Parkinson in Vol. V. of the First Series of the "Transactions of the Geological Society of London, 1820," but a reference to the orignal description is purposely omitted above, because the writer has not had the opportunity of consulting it.
/o Melina mytuoldes (?) (Lamarck. Sp.)

Perna mytiloides, (?) Lamarck. "Animaux sans Vertèbres." Second Edition. Vol. VII., page 79.

Perna mytiloides, (?) Damon. "Supplement to the Geology of Weymouth and the Island of Portland," Plate II., fig. 5.

Perna mytiloides, (?) Phillips. "Geology of Oxford and the Valley of the Thames," Plate XV., fig. 5.

Fia. 8.

Fia. 8.-A, B, C, D.-Outlines of four specimens of Melina mytiloides (?), about onethird of the natural size. The original of fig. A, though little more than half grown, is the only one in which the hinge and beaks are perfect ; in fig. C, the lower half of the shell is entire ; the other two are partly restored from the lines of growth.

Shell nearly equivalved, compressed, thickest near the anterior margin; general outline elliptic-ovate, obliquely truncate above; heigh much
great the dever Th olliqu maxir more 'There somet

The size a anteri curve the ap The lx tip be shatlo sides some openin anteric but oc has th straigh below

The the be that of openin

The
specim
it is rc lecide with t rounde middle

The
distant specim preser
all from the ont of shape species they they are al!
any localities ound also in trring on the
of the First ndon, 1820," nitted above, git.

I Edition. Vol. Weymouth and f the Thames,"
(9), about onein half grown, lower half of rowth.
ior margin; eigh": much
greater than the le ygth. The shape varies in different individuals, and the viriation of the contour can be best expressed by a separate description of earh part.

The hinge line is usually straight and ohlique, but the amount of obliquity is greater in some specemens than in others. In tig. A, the maximum of obliquity is reached; in figs. C and D, the hinge line is more nearly horizontal; and in fig. B, it was prohally a little convex. There are between ten and twelve cartilage pits in the hinge, and these sometimes, thongh not always, are narrowest at the posterior end.

The beaks are slender, elongated and terminal; they are unequal in size and of a different shape, but both project considerably beyond the anterior margin. As viewed from above, the beak of the right valve curves decidedly outwards from the hinge line at a short distance from the apex, and then turns rather suddenly inwards and almost backwards. The beak of the lefl value is straight, and points forwards, the extreme tip being bent slightly downwards. The anterior margin is usually shallowly coneave from the beaks to about the middle, so that the two sides of the upper half of the shell are almost exactly parallel. In some specimens, the concavity of the margin in the region of the byssal opening does not quite extend to the middle. Beneath the centre the anterior border generally widens a little, and becomes gently convex, but occasionally it is almost straight. The front margin, as a whole, has the shape of a sigmoid curve, but this is sometimes almost straightened out. In some examples, the stell is as wide or wider below than above; in others it is narrowest below.

The byssal orifice is well shown in two or three instances. Below the beaks, in front, the edge of the left valve irojects slightly heyond that of the right, and between both there is a long but very narrow opening.
The shape of the posterior margin is very variable in different specimens. In some it is almost straight and perpendicular; in others, it is rather oblique above the middle, and gradnally widens and becomes decidedly convex below; but in every case it forms an angular junction with the hinge line above The base is either evenly and narrowly rounded, or else it is produced and somewhat pointed in fiont of the middle.
The surface is marked apparently by irregular and, for the most part distant, concentric strine, but the test is exfoliated in all but a single specimen, and on this there is only a small portion of the outer layer preserved.

Height of the largest example (fig. B), about five inches from hinge to base; approximate length of ditto, two inches and seven lines; thickness through the valves, one inch and fou lines.
Ten specimens were collected, some of which are very imperfect.
It bus been thought desirable to give figures and a description of these fossils, for although the writer has failed to find a single character by which they can be satisfinctorily distinguished from the Pera mytiludes as figured by Mr. Damon and the late Professor Phillips, he is by no means convinced that they belong to that species. The Lamırekian definition of P. mytiloides (" P. testâ ovato-oblongâ, depress an, basin acutâ ; carline obliquâ) is altogether insufficient for the diserimination of closely related forms.
The generic name Melinda of Retains has priority over Pera, Braguiere.

25.

\times Syncyelonbma Meekiana. (N. ip.)
Fig. 9.

Fig. 9.-Synctclonkma Merkiana.-Ontline of an immature but nearly perfect example, with a portion of the test of another specimen magnified to show the details of the sculpture The engraver has not made the tubercles which result from the crossing of the ribs sufficiently distinct.

Shell small, compressed, thin; subovate when half grown, but nearly orbicular when adult; often triangular above the middle. The ears are imperfect in all the specimens; lint in the upper vale they appear to have been horizontal above and almost vertical at the sides; those of the lower valve are unknown.

The surface of the main body of the shell is marked by very numerous, fine a: al closely-arranged, rounded concentric ribs, which are crossed by exactly similar radiating costar. The points at which the radiating ribs pass over the concentric ones are marked by small romped elevations or tubercles, which give a nodose appearance to the senlpture, but which are too small to be risible to the naked eye. The wood-eut does not give a very good idea of these, Sculpture of the ears unknown,
from hinge lines; thick.
imperfect.
escription of gre character a the Perna shr Phillips, meier. The gầ, depressâ, the diserimi-

Per ra, Bro-
arty perfect exw the details of exult from the
n, but nearly The ears are they appear sides; those
ry numerous, e crossed by ndiating ribs elevations or e, but which cut does not own.

Out of about twenty specimens of this little Pecten, only one shows the peculiar nodosely-caneellate sculpture which forms one of the best distinctive characters of the species; the rest are all exfoliated.

At first sight S. Meekiana might easily be confounded with the Pecten Rogoznicensis of Zittel,* but a closer comparison, will show important differences in the sculpture of the two shells. In P. Royoznicensis the relatively coarse radiating ribs cut through the finer and more delicate enncentrie costar, and accordingly there are no tubercles or swellings at the point of contact.
The surface markings of Pecten nodoso-cancellata Eichwald, \dagger as the name suggests, are still more like those of S. Meekiana, but the narrowly spathulate shape of the Russian shell will at once enable it to be recognized.
The species is dedicated to Mr. F. B. Meek, of Washington, one of the most industrious and accurate of American paleontologists, and the author of the subgenus to which it belongs.

Ostrea. (Sp. wundt.)

Three single valves of a species of Ostraea, two of which are so much exfoliated that they only show the general outline of the shell, which is what would generally be called long and narrow, but the elongation is in the direction of the height, which is nearly twice the length. Their contour, too, is irregular, being somewhat dilated below the middle. The third specimen is broadly sub-triangular, the narrowest part being near the beaks; the test is very thick. The characters of the three collectively, are rather like those of the Ostrava Leymerii of Deshayes, a French Upper Neocomian fossil.

BRACHIOPODA.

$\left.)_{\text {Terebratula }}()^{2}\right)$ iothenta, W. 1889.
ain. val., woe. $1, \mu 6.2$, / / 163 .

Shell subovate or suborbicular, usually a little pointed both above and below. In the adult the length is greater than the width, but in halfgrown individuals the opposite is the case Pedicelled or neural valve without any definite umbonal ridge, but convex in the middle, and

[^30]obliqnely compressed at the sides; hrochial or homal valve much the flatest of the two. The beaks are partly broken in each specimen, but the formen was undoubtedly large: the size and shape of the deltidium cannot be aseertained. Front of the valves almont straight, or, at any rate, not distinctly sinmons.
The tent is exfoliated in every case, but there in clear evidence that the surface was murked with rather distant concentric strise, and in one specimen at least with fine and close net radiating lines. The punctate charncter of the shell is also plainly visible with a lens. Length of the largest example, two inches and two lines; width, twenty-three lines; maximum convexity twelve and a half lines.

The species is represented by three broken and badly preserved speeimens, which have very much the aspect of T. depressa, Lamarck, and T. subdepressa, Stoliozka, as represonted in the "Palaontologia Indica,"* but they we too imperfect to be identified with much certainty.

Terebratula (?) (Sp. Und!.)

A small specimen of possibly another species of Terebratula, but in very bad condition, and partly buried in the matrix. It has a more convex hœmal valve than the shell last described, and a much smaller foramen.

ANTHOZOA.

The only coral collected is so murlh water worn that its generie position is doubtful.

ADDITIONS AND CORRECTIONS.

Nautilus, Sp. Undt. (Puges 14-19.)
The remarks under this heading were writen in 1875 , before the publication of the "Report on the Invertcirate Cretaceous and Tertiary Fossils of the Upper Missour! Country." In that very useful work, Mr. Mcek expresses an opinion that the Nautilus elegans of Sharpe is probably identical with N. elegaas of Sowerby, but that N. elegans, D'Orbigny, is perhaps distinct. With all duc deference to Mr. Meek's judgment, the writerican searcely see his way clear to accept the first of these conclusions. Sharpe's deseription and figures of N. elegans do not accord at all well with those of the type in the "Mineral Conchology," yct no reasons are given to account for a discrepaney which, it is thought, must have been obvious if the two forms liad been compared directly.

[^31]uch the nen, but eltidium , at any ice that 1 in one metate of the c lines; murck, tologin ach cereut, the Sharpe's he type repancy mpared

I'he Sucia Inland foxsil agreex mhooxt exactly with Meek's diagnowis of the Ameriean shell figared as N. elegrin, hat the former is rather the moxt compressed of the two.

Act.for, Sp. undt. (Page 33.)

Six npecinens were deseribed under this name, which probably belong to two species, perbaps even to different genera. Two of those have a narrowly cylindrical shape like that of Aetcon attenuata, Meek, - the others a swollin boty whorl and a very whort spire, much as in Preedobuccinn" Vebrascense. \dagger Ahother specinen of the short inflated form lans recently bren obtained by bromking up small picees of rock from the Queen Charlotte Isiands, and this las part of the t:ant prewervel. Under the microscope the seuptare is seen to consist of flathened revolving rils, with merrly perpendicular sides, sepmated by grooves of marly equal width, both of which are crossed by tine, transverse, mised striar. Ringuiente earit, Gabb, \ddagger from the Chico Group of Cow Creck, Shasta Comity, California, has exactly the same surface markings, but it lam a more clongated spire than the peesent species, and has five or six whorls insteral of thres.

EliRATA.

Dage 7, line 12 from the bottom. For "rarely," reml "barely."
Page 21 , line 7 from the bottom. For "seem," read "seems."
Page 24 , line 6 fiom the tol. For "1'late $11 I$, , fig. 3," read "Plate III., fig. 1."

- "Report on the Invertebrate Cretaceous and Tertiary Fossils of the Cipher Missourl Country," buge SS!. Plate XIX., figs. $17, a$. b.
\dagger ldem, page 350. Plate XXXI., figs. $3, a, i, c, d$.
\ddagger " Palwontulogy of Californla," Vul. 1., payo 112. Plate XXIX., figs. 22.3, a. b.

CONCLUSION.

In Burope, where the succession of the Mesozoic rocks has been traced out in more minute detail than in North Ameriea, and where the animal life of the age is botter known, it is found that its marine fauna is contimous throughout, with only local exceptions. The Rhetie beds hold fossils which pass from the Trins into the Lias, and M. Ernest Fave has shown that the Jurassic and Cretaceons strata of the Alps are not sopmaten, as in the Anglo-Parisian basin, by fresh water deposits. In 1865, Prof. Oppel, of Munich, proposed the name of the Tithonic Group for certain rocks which ocerr in Spain, Italy, Switzerland, Austria, \&e., and which were then believed to the the equivalents of the Portland Oolite aud Purbeck beds of England. Still later, Dr. Neumayr has suggested the division of this group into $: 4$ Upper und a Lower series. It is by no means certnin that the Upper Tithonic strata are exactly synchronons with the English Parbecks, but it is tolerubly clear that the former represent the extreme top of the Jurassic Series as muderstood by European geologists. The Upier 'Tithonie deposits are berls of passuge between the Jumasice mad Cretaceons, and contan a small pereentage of marine fossils which pass upwards into the Lower Neocomian. Aucella Erringtomi, from the aumferous and presumahly Jurasice slates of the Sierra Nevada, may be identical with the A. Piochei of the Shasta Group of California, but, with this exerption, no tossil is known to be common to the Jurassic and Cretaceons formations in America.

A different classitication of the Cretaceous rocks is adopted in two of the most popular and recent hand-books of geology. Professors Jukes and Geikio* recognize only an Upper and a Lower Cretaceons group, and place the Wealden at the base of the latter. In the second edition of Prof. Dana's "Mamal of Geology," dated 1874, the period is divided into Upper, Middle and Lower Cretaceons, while the Weakden is regarded as a separate epoch. belonging to the upper part of the Jurassic. As Prof. Dama's manal is miversally used in America, it will be more consenient to adopt his arrangement.

[^32]It shou sedimenten water orif a sepurat between t

The co almost tot epoch, and uny know

The foll order:

Includit Meline m improrfect gener'a, ci new to sci tion. Of first time chauracter: It has rent mixt upon the
l'ive of suggestiv European

It should be premisal, also, that an opinion is gaining gromid that sedimentary deposits which contain fossils of exclusively lund or fresh water origin, such as the Purbeeks and Wealden, shonld be tabulated in a sepurate series from the purely marine strata, and not interenatad between them.*
The collection obtained by Mr. Richardson is remarknble for the almost total absence of those genera which are restricterl to a single epoch, and the fossils for the most part are strikingly milike those of any kuown division of the Mesozoic age in America.
The following is a syoptical list of the npecies, armaged in zowlogical order :-

	Trotal No. of Splecies.	Lurecognizable.	New.	Previously describerl.
Cephalopuda	14	3	8	3
Gasteropoda	(4	2	0
Lanneltibranchiata...	22	12	7	3
Brachiopoda	2	2	0	0
Anthozoa....	1	1	0	0
	45	22	17	19

Including the shells roferred doubttully to Scalaria Albensis and Melime mytiloides, twenty-two of the above are represented by such impertect specimens that the species, and in some eases even the genera, cumnot bo determinod with any precision. A tew are probably new to science, but they are not in a satisfactory condition for descrip. tion. Of the remainder, seventeen are now deseribed and figured tor the first time, while six belong to forms which have been named and characterized by other writers.
It has atrealy been stated that these invertobaters present "om apparent mixture of Oolitic and Cretaceons types," and this opinion :s based upon the following facts:-

Five of the new species, and three of the donbthat forms, bear at suggestive, but, at the same time, only a very general resemblance to European Oolitic fossils, which may be thus expressed:

[^33]| Y'een Charlotte Imlamis. | Aumingien ch Eurropean typed |
| :---: | :---: |
| Amomonites Jichardnonii | Noaly relatedi to A. corenatur, Bring. from the "Callovien" of France. |
| A Shidegatensixd A.Curlottensim | Of the type in Berisphincten tyramus Nemmar: and allion le neveral of the Oobitic Elannlati. |
| A. Loganianum forms \mathbf{A}. \& LI. ... | More like the Oolitic than the Cretareous Macer cephali. |
| | Scarcoly tu be dintingninked trom P. Hedidinghe methsis. |
| | A gemmenome charucterstic of the Oolitic epodi. |
| Plouromya Carlotteusin. | The rilbed Plenromye do not nppar to range no. woriks Into the Cretaceons, but this shell may be a Pинорй. |
| Melimm mytiloides? Lam. Sp. .. | Very donlitinlly referred to this 'Tithonie mad Midalin Oolite nuecion. Qulte likely loth diastinet and new. |

Further, a comparisou of Mr. Richurdson's collection with the fossils of the Tithonic formution of the Curpathimes, Southern Alps and Central Apemines, ns momorrophed by Zittel, reveals other, and perhops closee conrespmbences, suld as the following: -

Queen Charlithe lstands.	European Tithonlc.
Noutilus, Sp. Uudt.	Nautilus asper, Oppel.
Ammonites Perezianus	Oppelia Waageni, Zittel.
" Richardsonii....	Ammonites Groternus, Oppel.
" filicinctus...................	Lytoccras qumirisulcatum, D'Orb.
" crenocostatus	" Liebigi, Oppel.
" Sp. (Nr. A. slmplus D'Orb.)...	Anpidoceras cyclotum, Oppel, young.
Syneyclonema Meckinm.	Pecten Rogoznieensis, Zittel.

Aucella Pinchii, (tialh, is probably the same an the Aucella Mosquensis of You Bueh, and the latter shell is either of Midalle or Upper Oolitic age in Europe, bil in America A. Piochic is satid to be one of the mos! characteristic Lower Cretaceons fossils.

On the other hand, what little direct and positive evidence is at present affored by the fossils from the Queen Churlote Islands is in fuvour of their being referved to the Cretaceons period. Six of the species from this region, whose names are given below, have been previously described from other localities und by different writers,

The whe of the S
in ly 10

Ammonit Inoceramu Ammonit "
Ancella P1 Unio Hub

The re the earlie
Mr. Amerien Martine\% The "Sl the name anthor be sentativo an acemm of the k portion o Island. Diablo, for all is the extricht b of Califor Pacific ss Richardso which are feet.

The whole of these mre Croluceons, unless, indeed, some of the members of the Shata (iroup should prove to the of Uplere Tithomice age, which is hy mo means improbable.

The remainder helong, in many cases, 11 genern which origimated in the earlier purt of the Mesozoie age, and which are not yet extinct.

Mr. Gubb has divided the Gretaceons rocks of the west const of America into the Shasta, Chico, Martinez and Tejon Groups, hat the Martines is now regardel us only a sublivision of the Chico Gronp. The "Shasta Group" it the oldest known member of the formation, the name being originally suggested for a serion of beds which the same nuthor beliceses to be the "equivalent, or at least the nearest representative of the Neocomian."* Next in order comes the "Chico Group," an aceumulation of seliments of immense thickness, "which inclules all of the known Cretaceons of Oregon, and of the extreme northern prortion of California," \dagger also the Coal-bearing formation of Vaneonser Island. Aceording to Dana, the se-ealled "Martinez Group" of Mount Diablo, forms its uppermost subdivision. Lastly, the newest member of all is the "Tejon Gronp," whieh is supposed to correspond to the Maextricht beds of Europe, but which has not yet been recognizel outside of California. Nearly the whole mass of the Cretaceous formation of the Pacific slopes is made up of the Shasta and Chico Croups, and Mr. Richardson estimates the thickness of the Vaneouver Island deposits, which are believed to belong to the latter of these two divisions, at 5,000 feet.

[^34]

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

As three species of fossils are common to the Queen Charlotte Ishunds and to the "Shasta Group" of Califirnin, it will be curious to mote whether there are any other points of resemblanee between the known fanme of the two localities. An analysis of the fossils of the Shasta (iroup, as catalogned in Yol. II. of the "Paheontology of California," gives the following results:-Crnstacen, one species; Cephalopoda, nineteen; Gasteropoda, fifteen; Lamellibranchiata, eleven; Brachiopoda, one. The proportion of Cephalopodn to Gasteropoda, in the Queen Churlote Island collection is as fourteen to six, and there are no exclusively Cretaceous genera in any of the three classes of mollusea. In the Shasta beds there mre nineteen speries of Cephaloporla to fifteen of Gusteropola, and the only exclusively Cretaceons genera or sub-genera are Crioceras, Anisomyon, Thetis and Neithea.*

The writer happens to have exceptionally favourable opportunities for a compurison between the invertebrata of the Combearing rocks of the Vancouver and Queen Charlote groups. For the pnst five years, from 1871 to 1875 inclusive, Mr. Richardson has been engaged in a critical examination of the geolegy of the Naunimo and Comox districts of Vancouver, together with that of many of the smaller islands of the Strait of Georgia. One of the results of his labours in this region has been the collection of an extensive and interesting series of fossils, consisting of about seventy or éighty species of mollusea proper, two of brachiopoda one cyrlostomatous polyzoon, und a turbinolian coral. These have only been partly studied so firr. but twenty-nine of the shells are identien with us many species which have been already lescribel from these islands by Meek, Shumard and Gabb: nbout tifieen more are also conspecific with fossils either of the Chico Group of California or else of the Upper Cretaceous of Texas or New Jersey: the rest appear to be new. So fir as the number of genera and species are concernel, Gasteropoda decidedly predominate over Cephalopoda in the Vancouver Cretaceons, and the same thing holds true with regard to rocks of the same age in other localities. Thus, in Mr. Gabb's catalogue of the fossils of the Chico Group from Oregon and Califormin, \dagger there are as many as forty-eight species of Gasteropoda to fifteen of Cephalapoda. In the Vaneouver rocks each of the threo divisions of the mollusea is represented by very characteristic Cretaceons genera, as in the following list:-

Cophalopora. Baculites, Hamites, Heteroceras or Helicoceras.

[^35]fiaste
I,ame
kints of
The
Queen ret not both.

The
follows

1. T
deposit taleeolls, in Ame
?. Tl resembl "t very amount
2. Tl at least the coll of Calif Vancon Whil the pron nent th Jurassi series s hendin : mal per Islund Shasta uniler t

The
scarcely thongh nection Europe is a p rlirono
te Islamels us to note the known the Shanta 'alifornia," phalopoda, 1; Brachi. da. in the nere are no r mollusea. a to fifteen sulb-genera tunities for ceks of the , from 1871 al examinaVaneouver, of Georgia. , collection g of about awhopoda have only ntieal with islands by ncific with Upper CreSo far as decidedly is, and the re in other the Chico forty-eight Vancouver ed hy very
(iasteroporla. Stomatia, C'inulia, Fulgoraria, Pleurntoma.
Lamellihonehiata, Iximan, Acila, Conchocele. Thetis, amd many kinds of Inocurambes.
The marine famad of the coal-bearing series of the Vanconer and Queen Charlote Islands appear, therefore, to le entirely ditiorent, and as vet not a single speries call be satisfactorily identitiel as x momen to Imoth.
The preceding olservations may le summarizel or recapitulatell as. follows:-

1. That in Emrope there are beds of passage which connet the marime deposits of the Oolitic or Upper Jumssic epoch' with those of the Cretaceons, hat that similar transitional strata have unt yet leen recognized in Ameriea.
?. That some of the Quenen Charlotte Ishand fossils benr a considerable resemblance to European Oolitic types, but that this analogy is often of " very general chatacter, and can scarcely in any case be shown to amount to actual specific identity.
2. That among the specimens collected ly Mr. Richardson there are at least one or two species which are known to he Cretareons: also, that the collection indicates a fauna much more like that of the Shasta Giroup of Califormia and British Colnmbia than that of the eoal-hearing series of Vanconver and the adjucent islands.

While, on the one hand, the fossils deseribel in these puges show that the probable geological position of the beds which containet them is near the base of the Lower Cretacens formation, or top of the Upper Jurassic, they are insufficient to mark the definite horizon to which the series shomid be referred. It is sufficiently obvions that they exhibit a Hending of the life of the Cretaceous period with that of the Jurassic, and perhaps the best course would the to regard the Queen Charlotte Island serics provisionally as merely one of the oldest members of the Shasta Group, until the organic remains of the beds associated together under that name are better understood.

The Carbonaceous shales near Cowgitz contain a Unic which can seareely be distinguished from a Wealden species, and this circamstance, though it certainly seems to tend towards the establishment of a conneetion between the Queen Charlotte Island rocks and the Wealden of Europe, throws no light upon the exact age of the former. The Wealden is a purely local deposit, which hy some writers is regarde! as synrhronons with the Lower Necomian, and ly othems ans belonging to the

Jurassic formation. Prof. Dana places it (the Wealden) as a separate epoch, intermedinte botween the Oolitic and Cretaceons periods, but as has been beforg remarked, it should rather be correlated with one of the marine deposits of the Cretaccous or Jurnssic.

At present it would be premature to express any very decided opinion on the exact age of these Coal-bearing rocks. All that the fossils show with any degree of probability is that the series cmin scircely be much nower than the Middle Cretaceons, or older than the Upper Jurnssic.

PLATE I.*

Belemnites, Sp. undt. (page 11.)

Figure 1. Gluard of the most perfect specimen yet obtained. See also wood-cat No. 1.
" 1 a. Phragmocone of another individual of the same species.
" 1 b. Outline of transverse section of the original of figure 1 , near the apex.
" 1 c. Outline of transverse section of ditto, at the anterior or thickest end.

Ammonites Brewerif, Gabb (page 21.)
Figure 2. Side view of the largest example collected. Normal form, with faintly striated surface.
" $2 a$. Outline of aperture of do. The sides are represented as too atrajght below, they should eurve slightiy inwards, from a littie beneath the middie of the whorl, to its base.
" 3. Side view of a specimen of the dwarfed costate variety.
" 3 a. Outline of aperture of the same.

[^36]

AH Foord del et lith
Geo J.Gebhardt, mir.

PLATE II.

Ammonites Peazaranus (page 19.)

Figure 1. Side view of the type specimen.
" la. Outline of aperture of the same. The originai being rather water-worn, the periphery is represented as too narrow, when perfect it is rather more broudly rounded. The emargination of the base, too, is not nearly deep enongh.

Ammonites filicinctus (page 43.)

Figure 2. Side view of a small but very perfect individual.
" 2 a. Another representation of the same, to show the shape of the aperture and siphonal edge.
" $2 b$. Section of do. The edges of the inner walls of the whoris are obliterated.
" 2 c. Portion of the test of do, magnificd.
" 3. A larger specimen, partiy restored.

- 2.1 1LATH: 2

3.

PLATE III.

Ammontes Stoliczkanus, Gabb, var. spiniferus. (page 24.)
Figure 1. Side view of a distorted and somewhat immature specimen.

Amomites Thotheanus, Mayor. (page 41.)
Figure 2. A small but perfect example.
" $2 a$. Another view of the : ame.

Ammonites Laperousianus (page 39.)

Figure 3. The largest of the two specimens.

Ammonites, Sp. undt. Near A. Sim lus, D'Orb. (page 47.)
Figure 4. Side view.
. 4 a. Front do.

PLATEIV.

Anmonites Stoliczkanus,' Gabb, var. spiniferus (page 24.)
Figure 1. A broken but nearly adult example, drawn in such a position as to show the depth and abrupt truncation of the inner edge of part of the body whorl.

Ammonites Loganianus. Form A. (page 29.)
Figure 2. Side view of the only specimen in the collection.
" $2 a$. Front aspect of the same.

Ammonites Richardsonit (page 32.)
Figure 1. View of the most perfect side of the type specimen.
" 2. Front of do. partly restored.

$$
\begin{aligned}
& \text { (ho uxpe. of melt late.) }
\end{aligned}
$$

Plate VI.

Ammonites Carlottensis (page 38.)
Side view of the type of this species. The shape of the aperture is shown in woodcut No. 5 on page 38.

化, 29.

PLATE VII.

Ammonites Skidegatensis (page 34).
Side view of the largest individual collected. An outline of the aperture of this specimen is given in wood-cut No. 4 , on page 34.

plate VIII.

Ammonites Loganianus. Form.B. (page 30.)
Figure 1. Side view, partly restored.
" 1 a. Front of the same specimen.

Ammonites Loganianug. Type. (page 27.)

Figure 2. The most perfeet side of a crushed and distorted example of this speeies. The wood-cut (figure 3 , on page 28) showing the outline of the aperture, is drawn from another individual.

Phate Id:

Annenten simelatenais (page 34.).
Figure 1. A alpposed yonug individual " this spectien.
Amyoniten chenocostation (puge fi.)
Figure 2. Side virw.
" 2 a. Portion of the test of do. magnified.
Hamites, Sp. imill. (pure 48.)
Figure 3. The only mpecimen yet obtained.
Anatioppin tentisthata (phge 48.)
Figure 4. Dormal view of one of the most perfict examples. The two apleal whorls are partly rextored.
" 4 a. Surface markingk of the kame, magnified.

Figure 5 . A fragment of a shell which is wry doultfully referred to this species. It may not be a Scalaria nt all.

Figure 6. Dormal mapect.
" 6 a. Base of the same to show its sculpture, also the shape and size of the umbilicus.

Mantrela cabinifera (page 54.)
Figure 7. Left valve e of the only specimen, magnified about siz times.
P'abonmy Carlottensis (page 5\%.)

Figure 8. Right valve.

> l'hol.abomya ovimothes (fage 59.)

Figure 9. Left valve,
Cabilista subtrigona (page (i3.)

Figure 10 . Left valve.
(Ahbista, Ajp. madt. (p:ige ti4.)

Figure 11. Iaft valve.

> Lucona, Sp. mult. (pare til.)

Figure 12. A right milve, with the anterior end downwards. Ser also wool-cul No. 6.

Unio Hebrarmi, Gabb (page 65.)
Figure 13. Right ralve of a narrowly clongated varicty of this apecies. The dotted lines are added not by way of restoration, but to show the more usual contour of the posterior end, as seen in other specimens.

- Most of the lamellibranchiates figured on this and the following Plate have bothivalves preserved, but the beit side has boen uniforunly selected for I!Iustration.

10.

PLATE X.

Thana burbsicostata (page 68)

Figure 1. Left valve of an average example.

Thuonta, Sp. wundt. (page 70.)
Figure 2. Left valve of an undistorted individual, with a portion of the outer surface of the test preserved. Part of the right-valve is .. 30 visible.
" 2 a. Left valve of it crushed and exfoliated specimen.

Ascella Monguensis (?) Vow. Much. (page 74.)

Figure 3. Right valve of a distorted example.
" 3 a. Portion of the Anterior margin above, to show the inflection of both valves just below the beaks.

Meleahina amyodaloidea (page 78.)
-
Figure 4. Right valve of the type of the species.

$$
\begin{aligned}
& =\sqrt[5]{v} \sqrt{2}+2+4 \operatorname{coc} .
\end{aligned}
$$

A. H Foorddelat 1 th

INDFX
F. Perails.
\qquad Bowndary 9 fliutisione.

- Irobrade cominumtion grerme.

1. Lonurr handes with real and irent ore.
2. Cinurse carghturemets.
3. I'pper athelos and samdstaumes.

Sre Roport of thagerss. for 1952-73 1tuger 57.

1.

ass Lem-Whtrriont.

OHOHOCHCN KITHET of CAWMA. Abbed RC.Sriwyn, MRS.te. Director.

MAP
Shewing the localities of foosik coilected

from the

qUEEM CHARLOTTE ISLANDS.

INiDTX

F. Sreaits.

—_ Bownclary gf Disisiome.
-.-.-- Prodrwe cantinumion of inme.

1. Lowor chates with raval nowd iners ore.
2. 1 Cinarse nemghonemt.
3. 1Pper analoce and sumdstawes.

Ster Rispart ©f Phagrras, for 1B72-73 1trger 57.

Latteude $533^{\circ} 1.5^{\circ} \mathrm{N}$.

[^0]: " Geology of Oxford and the Valley of the Thames" Oxford: 1871. Page 181.

[^1]: " "British Zoophytes." Second Edition. Vol. I., page 164,

[^2]: " "Manual of the Mollusca." Page 73.
 \dagger "Monograph of the British Belemnitida." By Prot. Phillips. Part 11., page 30. Palseontographical Society : 1866 .

[^3]: * "Palêontologrie Françalse. Tergains Crétacés." Vol. I., page 87. Atlas, Plate XIX. \dagger " " " 4 Vol. I., page 70. Atlas, Plates VIll. and IX,

[^4]: *The numbers attached to these groups refer only to the present collection. The order is nearly that sdopted in the "Palmontologla Indica," but the Llgati are placed between the Planulatl and Pimbriatl. Instead of before the Planulati. In the case of the Ammonites only, 2 short definition of the salient char. acters of each specles is prefixed to the more detalled description.

[^5]: - In the only two specimens obtained, the centre was covered by the matrix and it is just possible that if this were removed, rather more than one volution and three-fourths of another would be visible externally. Still, the ehsie was detached from the unsbilicis of the example figured, to a depth of nearly three-quarters of an finch, without a.trace of the inner whorls being exposed.

[^6]: - In one specimen, these are narrow and elongated; in the other, whose surface is much abraded, they are rounded and uhtuse; in both they are feebly marked and itconspicuous.

[^7]: race is much abraded,

[^8]: " "Paléontologie Françalse. Terrains Jurassiques," Vol. II, Atlas, Plate CXL.

[^9]: -"Puléontologie Française, Terrains Jurassiques." Vol. II. Atlas, Plat CXLJI., figs. 1 and 2.

[^10]: - Palfontologie Française, Terrains Jurassiques. Vol. 1. Atlas. Plates CLXVIII, \& CLXIX\dagger "Mineral Conchology." Vol. Il., page 231. Plate CCI.

[^11]: * "Terrains Jurassiques." Vol. 11. Atlas, Plate CXXXV, figs. 3-5.
 \dagger The original description nud figure A. Braikenridgit in the "Mineral Conchology," are so varue nud unsatisfactory that it is by no means improhable that this nane may have been bestowed by European writers on two very different speeles. Further, the shell represented by Pletet, In hls "Traite de Palean. tologie" (Atias, Plate LV., fig. 1) as dmmonitex IIumphreysianus, seems to be ldentical with the A. Braikenridgii of D'Orblgny.

[^12]: * "Geological Survey of Canada. Report of Progress for 2872-73." Page 72.
 *"Jahrbuch der Kalserlich-Koniglichen Geologischen Reichsanstalt." Vienns: 1870. Vol. XX., page 150, Plate IX.

[^13]: * "Paléontologie Française, Terrains Cretaces." Vol. I., page 361, Atlas, Plate CIX;, figs. 4 and 5 ,

[^14]:

[^15]: *"Cretaceous Pelecypods, of Southern India," page 24. † "Manual of the Mollusca," page 329.
 \& "Cretaceous Pelecypoda of Southern Indla," pace 24. s "Preceedings of the Academy of Natural Sclences, Philarielphla, 1862," page 194.

[^16]: * "Etudes Critiques sur les Mollusques Fossiles." Livraison II., page 103.
 \dagger Idem, paye 113 . \ddagger Idem, page 123. Plate III, a, flgs. 1-0.
 8 Idem, page 119, Plate 111., figs. 7-9. Plate III. b, fige. 1-6.
 \|" Proceedlngs of the Academy of Natural Sciences, Philadelphia, 2862," page 28. Also, "Report oll the Invertebrate Cretaceous and Tertiary Fossils of the Upper Missouri Country." By F. B. Meek, Warhington: 1876. Page 217, Plate V., fge $4, a, b$.

[^17]: * As thls figure dues not convey a very acentate idea of the shape of the shell, a more correct oultine is given in the woulcul.

[^18]: *"Proceedlugs of the Acadenny of Natural Solences of Philadelphia, 1856," page 83. "Report on the Invertebrate Cretacoous and Tertlary Fossila of the Upper Missouri Country." By F. B. Meek, Washlugton : 1870. Payes 182-3, Plate XVII., figs. 15, a, b, c, d, e.
 \dagger "Memoirs of the Amerium Academy of Arts and Sciences, Cambridge." Vol. V New Series. Pages 3 sis-3, Plate 1., fig. 7. "Rejwrt on the Invertebrate Cretacoous and I'ortiery Foeslls of the Upper Miswurl Country," \&c., pages 186-7, Plato V., figs. 2, a, b, c.

[^19]: * "Memol

 Plate 1., fig. Country," \&
 † " Trans
 fig. 5.
 " Proce
 the Invertebr
 cut especially

[^20]: * "Memulrs of the American Academy or itrs and Solences, Cambridge," Vol. V. New Series, Plate I., fig. 5. "Report on the Invertebrate Cretaceous and Tertiary Fossile of the Upper Mlssouri Country," \&c., page 188, Plate V., figs. 1, a to d.
 \ddagger "Transactione of the Geological Society of London." Serles IV. Vol. II., page 342, Plate XVII., fig. 5.
 $\|^{\text {" Proceedlngs of the Acedemy of Natural Sclences. Phlledelphla, 1857," page 144. "Report on }}$ the Invertebrate Cretaceous and Tertiary Fowells of the Uppor Mimourl Country," We., page 146. Wocd-

[^21]: " "Transactions of the Geological Society of London." Second Series, Vol. VII., page 194, Plate XXII., fig. 5.

[^22]: * "Palcontology oi Calilornia;" Vol. I, pp. 188-9. Plate XXV., Ag. 176.

[^23]: "Palcentology of Callfornia," Vol, I., page 100. Plate $\mathbf{X X V}$., fig. 178, and Plate XXXI, fig. 262,

[^24]: *Tatlya

[^25]: *Tatiyaco Lake is on the east branch of the Homathco River, which empties into Bute Inlol. In tomo maps it is spelt Tatlahco or Tatiayoco.

[^26]: - "gketch of the Cleology of Epitzbergen." By A. E' Nordenskiold. Translated from the "Tranametiong "of the Royal Swedish Academy of Bclences, Stockholm, 1867."

[^27]: * "Zeitschrift der Deutschen Geologlschen Gessellschaft, Berlin." Vol, XVI., pages 684-94, and Yol. XVII., pages 448-456.
 : "Bulletln de la Sociélé Impériale des Naturalistes de Moscou." Vol. XLVill., page 150.
 : Idem., Vol. XLVIII., payges 373-80.
 8 " Lethea Russica," Vol. U., page 623.
 || " Oeology of Callforula," Vol. I., pages 479-80.

[^28]: * "Report on the Invertebrate Cretaceous and Tertiary Fossils of the Upper Missourl Country." Wanhington: 1876. Page 29.

[^29]: - "Palaontology of California." Yol. II., pare 192, Plate XXXI., fig. 89.

[^30]: * "Die Fauna der Aelteren C'phalopoden Fuehrenden Tithonblldungon," page 241, Plate XXXVI., figs. 23, a, b.
 \dagger "Lethe Rosslca," Vol. II., page 445. Atlas, Plate XX., figs. 11, a, b
 Hand Island, ©. Fin., Sept. 1895: thee offecimens.

[^31]: * Vol. IV. pp 18, 17. Plate 11., and Plate III., figs. 1-8.

[^32]: * "The Studeni's Munual of Geology," By J. Beete Jukes, MA., F.R.S. Third Edition. Edited by Archibald Geikie, F.R.S. Ediuburgh : 1372,

[^33]: *See Prol. J. Young's Address bofore the Geological Section of the Brillsh Assuciation for the Adrancemont of Scionce, at Glaggow, 1370.

[^34]: * "Palaentology of Californla," Vol. It. Foot note to page 129.
 \dagger Idem. Preface, page xlv,
 ; "Mautual of Geology." Second Edition. Page 457.

[^35]: * According to Stollezka, Sola is an older uame than either Noithea or Ganira. \dagger थPaleontology of California," Vol. H., pp. 20s-254.

[^36]: - Unless there is a distinct stateinent to the contrary, the figures in all the Plates are of natural size.

